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Preface

Developing software for current and especially for future architectures will require
knowledge about parallel programming techniques of applications and library pro-
grammers. Multi-core processors are already available today, and processors with a
dozen and more cores are on the horizon.

The major driving force in hardware development, the game industry, has al-
ready shown interest in using parallel programming paradigms, such as OpenMP
for further developments. Therefore developers have to be supported in the even
more complex task of programming for these new architectures.

HLRS has a long-lasting tradition of providing its user community with the
most up-to-date software tools. Additionally, important research and development
projects are worked on at the center: among the software packages developed are
the MPI correctness checker Marmot, the OpenMP validation suite and the MPI-
implementations PACX-MPI and Open MPI. All of these software packages are be-
ing extended in the context of German and European community research projects,
such as ParMA, the InterActive European Grid (I2G) project and the German Col-
laborative Research Center (Sonderforschungsbereich 716). Furthermore, indus-
trial collaborations, i.e. with Intel and Microsoft allow HLRS to get its software
production-grade ready.

In April 2007, a European project on Parallel Programming for Multi-core Ar-
chitectures, in short ParMA was launched, with a major focus on providing and
developing tools for parallel programming.

This project is funded through the ITEA initiative and involves partners from
industry and research from application providers and tools developers, such as plat-
form provider Bull, Allinea with its parallel debugger DDT, the Center for Informa-
tion Services and High Performance Computing (ZIH) with the parallel performance
analyser Vampir-NG and the Central Institute for Applied Mathematics (ZAM) with
Kojak/Scalasca.

As a spin-off of all these activities the 1% Parallel Tools Workshop was held on
7-9th of July, 2007 at the High-Performance Computing Center Stuttgart (HLRS).
Participants from research and developers from science and industry were invited
to this interactive workshop which attracted 67 scientists from all over the world.
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The focus was on presentations on the various tools, but also on giving hands-on
sessions to demonstrate the strengths of each tool.

With this year’s 2"¢ Parallel Tools Workshop on July the 7th/8th, HLRS wants
to offer its industrial and scientific user community, precisely this information in
the form of a thorough publication on the software packages, again ranging from
debugging tools to performance analysis and best practices in integrated developing
environments for parallel platforms. The papers of this workshop are presented here.
Last year’s workshop brought together software developers from the US, Germany,
France and Great Britain, and we expect an even wider audience this year.

This year’s contributions are in the fields of Integrated Development Environ-
ments, Parallel Debugging and Performance Analysis tools from a wide range of
scientific and industrial tool developers. This includes tools from vendors such as
Cray, Intel, IBM, Sun, Acumem, Allinea and Totalview, as well as research institu-
tions, including the University of Oregon, Technical University of Dresden and the
Research Center in Juelich.

Stuttgart, April 2008 Michael Resch, Rainer Keller
Valentin Himmler, Bettina Krammer
Alexander Schulz
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Sun HPC ClusterTools™ 7+: A Binary
Distribution of Open MPI

Terry Dontje, Don Kerr, Daniel Lacher, Pak Lui, Ethan Mallove, Karen Norteman,
Rolf Vandevaart, and Leonard Wisniewski

Abstract The Sun HPC ClusterTools 7 release was Sun’s first binary distribution
of the Open MPI software. This release marked a change in source-code base for
Sun from a proprietary code base derived from the Thinking Machines Corporation
Globalworks™ software to the open-source Open MPI software. Sun HPC Cluster-
Tools includes packages of binaries built from the Open MPI source code by the
Sun™ Studio compilers and install scripts for installing those packages across a
cluster of nodes. The Sun HPC ClusterTools team contributed a Sun Grid Engine
plug-in and developed the uDAPL Byte Transfer Layer module as its Infiniband so-
lution on Solaris™ operating system. Additionally, Sun HPC ClusterTools includes
examples of using DTrace to analyze performance and debug MPI applications.
Other product-focused activity included significant contribution to the development
of the MPI Test Tool (MTT) and development of a set of user documentation. This
paper describes the new Sun HPC ClusterTools based on Open MPI, focusing on
areas where Sun has contributed to Open MPIL.

1 Introduction

In April 2006, Sun joined the Open MPI community and decided to use Open MPI
as the source-code base for its Sun HPC ClusterTools product, thereby replacing its
previous proprietary source-code base [1].

Open MPI was founded by researchers at Indiana University, University of Ten-
nessee, Los Alamos National Laboratory, and HLRS / University of Stuttgart. The
initial implementation was intended to be a clean-slate approach combining at-
tributes of each of those institutions’ previous MPI implementations [2, 3]. Today,
the Open MPI community includes 15 member institutions, another 9 contributor in-

Sun  Microsystems, USA, e-mail: {Terry.Dontje,Don.Kerr,Daniel.Lacher,
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stitutions, as well as many individual developers and users. More information about
Open MPI can be found at http: //www.open-mpi.org.

Sun HPC ClusterTools includes packages of binaries built from the Open MPI
source code by the Sun Studio compilers and install scripts for installing those
packages across a cluster of nodes [4]. The Sun HPC ClusterTools team contributed
a Sun Grid Engine plug-in and developed the uDAPL Byte Transfer Layer (BTL)
module as its Infiniband solution on Solaris [5, 6]. Additionally, Sun HPC Cluster-
Tools includes examples of using DTrace to analyze performance and debug MPI
applications [7]. Other product-focused activity included significant contribution to
the development of the MPI Test Tool (MTT) and development of a set of user doc-
umentation [8]. This paper describes the new Sun HPC ClusterTools based on Open
MPI, focusing on areas where Sun has contributed to Open MPL.

The rest of this paper is organized as follows. Section 2 gives a brief history of
the Sun HPC ClusterTools product from its proprietary era through its current Open
MPI participation. Sections 3 discusses several features developed by the Sun team
to augment support to include Sun systems and to utilize unique features of Sun
systems. Section 4 describes some of the activities in which the team participated
for the Sun HPC ClusterTools product and when applicable contributed to the com-
munity. Section 5 offers some pros and cons of using Open MPI as the source code
base vs. the proprietary ClusterTools code base and Section 6 wraps up with future
focus areas and conclusions.

2 History

In 1996, Sun acquired the Thinking Machines Corporation Globalworks product
and team. Globalworks was a set of parallel programming tools originally intended
to support a variety of operating system platforms. With the acquisition by Sun,
Globalworks was renamed Sun HPC ClusterTools and targeted solely as a binary
distribution of parallel programming tools for the Solaris operating system and the
SPARC® systems.

The first Sun HPC ClusterTools release not only included MPI libraries and a run-
time environment for launching parallel jobs as it does today, but it also included a
High Performance Fortran compiler, a parallel file system, the Prism parallel debug-
ger, the Sun Scalable Scientific Subroutine Library (S3L), and various other libraries
and utilities for parallel programming and cluster management [9]. Sun delivered
six releases derived from the Globalworks code base, concluding with the release of
Sun HPC ClusterTools 6 in March 2006, which was the first release to support So-
laris on x64. Over the course of its ten-year history, except for the MPI libraries and
run-time environment, the technology for the other tools were gradually integrated
into other products or disbanded.

In April 2006, Sun joined the Open MPI open-source community, as one of the
first vendors to embrace Open MPI as a clean-slate modular architecture with an
open community-based approach to development. In April 2007, Sun debuted the
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use of the Open MPI source code as its basis in Sun HPC ClusterTools 7, a binary
distribution of the Open MPI libraries and the Open Run-Time Environment (ORTE)
for launching parallel jobs, based specifically on Open MPI 1.2.

Sun released a Sun HPC ClusterTools 7.1 update release in November 2007 based
on Open MPI 1.2.4. Sun HPC ClusterTools 7 and 7.1 supported only Solaris 10.
However, the upcoming Sun HPC ClusterTools 8 release, based on Open MPI 1.3,
will be the first Sun release to support a binary distribution of Open MPI on the
Linux platform and also support OpenSolaris™ [10].

3 Sun-Driven features

3.1 uDAPL Byte Transfer Layer

When Sun joined Open MPI, Solaris did not support its own implementation of the
Infiniband (IB) Verbs API in contrast to the Open Fabrics Alliance (OFED) Verbs
implementation commonly used on Linux and other platforms [11]. Rather, Solaris
did support an implementation of the User-Level Direct Access Programming Li-
brary (uDAPL). The uDAPL APl is a user-level library defined by the DAT Collabo-
rative to provide a transport-neutral infrastructure that provides RDMA capabilities
in user space [12].

In Open MPI, at the lowest-level in its MPI communication stack are protocol-
specific Byte Transfer Layers (BTLs). When launching a parallel job, an Open MPI
user can specify which BTLs to use for MPI communication. The uDAPL BTL was
originally developed by Indiana University for Linux and adapted by Sun to support
Solaris as well. To select the uDAPL BTL, a user launches a parallel job as follows:

mpirun -btl self, sm,udapl

In the scope of a community-based approach, supporting a low-level software
module different than the rest of the community presents a number of challenges,
with the greatest difficulty being the inability to directly leverage technological ad-
vances by other community members. To this end, in the future, Solaris will support
the OFED Verbs implementation, and the ClusterTools team will consequently be
able to collaborate directly with the majority of the Open MPI community on devel-
opment of Infiniband support.

3.2 Sun Grid Engine plug-in

Sun Grid Engine (SGE) is a resource manager which allows tight integration with
the parallel job launchers of various MPI implementations. SGE and its accompa-
nying open-source version Open Grid Engine are widely popular as free and open



6 T. Dontje et al.

resource managers. For Open MPI, Sun added an SGE plug-in module to support
the launch of Open MPI jobs on SGE.

A user can invoke an Open MPI job using SGE in several ways. The most com-
mon way to start a parallel job over SGE is by submitting a batch job. The Open
MPI mpirun command is embedded inside a batch script that will be executed
by gsub. This allows SGE to schedule the parallel job when there are sufficient
resources available for starting the parallel job on the number of nodes requested.
Using this method should give consistent and reproducible runs as all the informa-
tion can be specified inside the batch script.

# Submit a batch job with the '‘mpirun’ command
# embedded in a script
shell$ cat script.sh

#!/sbin/sh
#$ -N jobname
#$ -3 v

#$ -0 out.S$SJOB_NAME.oSJOB_ID
#$ -pe orte 4
/path/to/mpirun -np $SNSLOTS mpijob

shellS gsub script.sh

The other way is to start an SGE interactive shell that would allow the user to log
on to the head node which is responsible for starting the parallel job via g.

# Allocate an SGE interactive job with 4 slots
shell$ gsh -pe orte 4

# Now run a 4-process Open MPI job
shellS$S mpirun -np $SNSLOTS mpijob

# Submit an SGE and OMPI job and mpirun in one line
shell$ grsh -V -pe orte 4 mpirun -np 4 mpijob

It is advantageous to run large jobs with SGE as the resource management sys-
tem. SGE allows the user to have exclusive use of a set of nodes dedicated to run
their code without being interfered by other users. With SGE, the user would not
need to come up with an explicit list of nodes to run. This simplifies the need to
parse a node list, especially on a large cluster environment on which the list of
nodes could be long. Also, nodes can become unavailable, but SGE always gives
you an up-to-date list of usable nodes and removes the unavailable ones from the
node list.

The ability to clean up temporary space and collect standard and error outputs
after each run are also particularly useful for running jobs across a large number of
nodes.

There is also an ability to limit an MPI job on a subset of nodes by specifying
the mpirun command in conjunction with a host list which identifies the subset of
nodes.



Sun HPC ClusterTools™ 7+: A Binary Distribution of Open MPI 7

SGE supports many popular operating systems. This helps to select and run code
on a cluster which is comprised of heterogeneous platforms. In the current SGE 6.1,
the job launching mechanism for sending parallel tasks to the execution hosts relies
on the “grsh -inherit” command, which is an rsh-based mechanism. Since
the ports opened by rsh for each connection is limited to only 1024, for large paral-
lel jobs that need to run across hundreds or thousands of nodes at once, an SGE clus-
ter should be configured to use ssh as its backend mechanism for remote launching.

SGE gathers the resource usage from its job by appending an additional group ID
to a user ID while the job is running. Hence, SGE ships with its version of the RSH
daemon which includes this modification. SGE can be configured to use a vanilla
version of ssh that does not contain any changes for proper job accounting [13].
However, to achieve job accounting with ssh, the code for the ssh daemon needs
to be modified and built together with SGE. This is sometimes known as the ssh
Tight Integration. Modifying the SGE code for the ssh Tight Integration used to be
an audacious task with earlier SGE versions, but SGE 6.1 includes these changes to
simplify the task.

3.3 Sun Studio Compiler Support

Sun offers its own suite of compilers in its Sun Studio product. Sun Studio includes
C, C+, and Fortran compilers as well as the dbx debugger, performance libraries,
a program analyzer tool, support for OpenMP programs, and an integrated develop-
ment environment (IDE). Sun Studio supports both the Solaris and Linux operating
systems.

Open MPI supports compilation of its source code and Open MPI applications by
anumber of compilers. Sun HPC ClusterTools is built using Sun Studio and supports
MPI applications built with Sun Studio and linked with the ClusterTools libraries.
For each release version of Sun HPC ClusterTools, consult the release notes to find
out which versions of Sun Studio are supported for compiling user applications.

There are numerous challenges when adding a new compiler to the support ma-
trix of an open-source code base. In the case of supporting Sun Studio, these chal-
lenges included adapting the code base to the stricter memory alignment required
by chips, incompatibilities in support levels among different compilers for various
C+ libraries and Fortran functionality, and ensuring that the best set of flags are
used. All of these challenges require constant monitoring as it is not expected that
community members are aware of restrictions and incompatibilities among all the
compilers supported by Open MPI. To make it easiest for users to use the Sun Stu-
dio compilers, the Open MPI compiler wrappers were updated to insert the best set
of flags automatically for the user at compile time. The following are examples of
compiler wrapper use for Sun Studio and their corresponding translations into actual
compile command lines.

% /opt/SUNWhpc/HPC7.0/bin/mpicc -o tmp tmp.c -showme
cc -I/opt/SUNWhpc/HPC7.0/include/openmpi
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-I/opt/SUNWhpc/HPC7.0/include -o tmp tmp.c

-R/opt/mx/1ib -R/opt/SUNWhpc/HPC7.0/1ib
-R/opt/mx/1lib/sparcv9

-R/opt/SUNWhpc/HPC7.0/1ib/sparcv9
-L/opt/SUNWhpc/HPC7.0/1ib

-lmpi -lopen-rte -lopen-pal -lsocket -1lnsl -1lrt -1m -1d1

% /opt/SUNWhpc/HPC7.0/bin/mpicc -o tmp -xarch=v9 tmp.c -showme
cc -I/opt/SUNWhpc/HPC7.0/include/openmpi
-I/opt/SUNWhpc/HPC7.0/include/v9
-0 tmp -xarch=v9 tmp.c
-R/opt/mx/1lib -R/opt/SUNWhpc/HPC7.0/1ib
-R/opt/mx/1lib/sparcv9
-R/opt/SUNWhpc/HPC7.0/1ib/sparcv9
-L/opt/SUNWhpc/HPC7.0/1ib/sparcv9
-lmpi -lopen-rte -lopen-pal -lsocket -1lnsl -1lrt -1lm -1d1l

3.4 MPI Profiling

Starting in Sun HPC ClusterTools 8, profiling support will take greater prominence
in the product. Moreover, there will be four new ways to access greater levels of
profiling information:

1. via DTrace probes,

2. via PERUSE probes,

3. via VampirTrace probes, and

4. via special hooks using Sun Studio Analyzer.

DTrace is a comprehensive dynamic tracing facility debuted in Solaris 10 that
can be used to examine the behavior of both user programs and the operating system
itself. Sun HPC ClusterTools 7 includes some examples of using Dtrace to examine
MPI programs. Sun HPC ClusterTools 8 will include some new DTrace providers
to examine various MPI state at key locations in the MPI message path.

DTrace allows one to place probes into code such that a DTrace script may be
used to get a view of what is happening in the code. In the case of MPI, we’ve cho-
sen to piggyback on the mpi_peruse framework, which specifies various events
within an MPI library and data available for that event. To use the mpi_peruse
framework, one usually has to have their user code write/register callbacks to be
called when a PERUSE event happens. What the DTrace mpi_peruse provider
does is expose these events via probes thus not requiring one to write actual code
to handle registration or logging info. The mpi_peruse provider provides probes
to all of the PERUSE events that are defined in the PERUSE specification. This
provider allows one to capture events such as

PERUSE_COMM_REQ_INSERT_IN_POSTED_Q
and
PERUSE_COMM_REQ_REMOVE_FROM_POSTED_Q
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to keep track of the posted queue depth. Likewise one can do similar queue inves-
tigations with the events that track unexpected messages. One can also track send
and receive requests.

All of this allows one to determine what may be happening within the MPI library
and do it in an unobtrusive way. That is while an MPI code is running you can
attach dtrace with a script that uses the mpi_peruse provider to one of the
processes and garner information that you are interested in. If it turns out that you
need to adjust the script you can and then reattach dtrace to the MPI process
without disrupting the MPI job. The following example is a netstat-like script
that shows you queue changes (requests, posted, unexpected) and data transferred
by the process dtrace is attached to.

/ *
* Copyright (c) 2007-2008 Sun Microsystems, Inc.
* All rights reserved.
* Use is subject to license terms.
* SCOPYRIGHTS
*
*+ Additional copyrights may follow
*
* SHEADERS
*/
BEGIN
{
recvs_bytes=0;
recvs_act=0;
recvs_posted_size=0;
recvs_unexp_size=0;
recvs_posted_matches=0;
recvs_unexp_matches=0;
sends_act=0;
sends_bytes=0;
output_cnt = 0;
printf ("IN(Total) Q-sizes Q-Matches ouT\n") ;
printf ("bytes act posted unexp posted unexp bytes act\n");
printf ("%$5d %64 %6d %54 %6d %5d %$5d %$6d \n",

recvs_bytes, recvs_act, recvs_posted_size,
recvs_unexp_size,
recvs_posted_matches, recvs_unexp_matches,
sends_bytes, sends_act) ;
}
/* Print Statistics every 1 sec x/
profile:::tick-1sec
{
printf ("%$5d %64 %6d %$5d %$6d %5d %5d %6d \n",
recvs_bytes, recvs_act, recvs_posted_size,
recvs_unexp_size,
recvs_posted_matches, recvs_unexp_matches,
sends_bytes, sends_act);
++output_cnt;
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}
profile:::tick-1sec
/output_cnt==22/
{
printf ("IN(Total) Q-sizes Q-Matches ouT\n") ;
printf ("bytes act posted unexp posted unexp bytes act\n");
printf ("%$5d %6d %$6d %$5d %$6d %5d %5d %$6d \n",

recvs_bytes, recvs_act, recvs_posted_size,
recvs_unexp_size,
recvs_posted_matches, recvs_unexp_matches,
sends_bytes, sends_act);

output_cnt=0;

/* Collect Send statistics =/

/* Collect Active Send Requests */

mpi_ peruse$Starget:::PERUSE_COMM_REQ_ACTIVATE
/args([3]->mcs_op=="send"/

{

++sends_act;

/* Collect Removal of Send Requests x/

mpi__ peruseS$Starget: ::PERUSE_COMM_REQ_NOTIFY
/args[3]->mcs_op=="send"/

{

--sends_act;

/* Collect bytes Sent =/

mpi__ peruseS$Starget: ::PERUSE_COMM_REQ_XFER_END
/args[3]->mcs_op=="send"/

{

sends_bytes += args[3]->mcs_count;

/* Collect Active Recv Request */

mpi__ peruseS$Starget: ::PERUSE_COMM_REQ_ACTIVATE
/args[3]->mcs_op=="recv"/

{

++recvs_act;

/* Collect Removal of Recv Request =x/

mpi__ peruse$target: ::PERUSE_COMM_REQ_NOTIFY
/args|[3]->mcs_op=="recv"&&recvs_act>0/

{

--recvs_act;

/* Collect Request Placed on Posted Q */
mpi__ peruseS$Starget: ::PERUSE_COMM_REQ_INSERT_IN_POSTED_Q
/args[3]->mcs_op=="recv"/
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++recvs_posted_size;

/x Collect Msg matched Posted Q x/
mpi_ peruseStarget:::PERUSE_COMM_MSG_MATCH_POSTED_REQ
/args[3]->mcs_op=="recv"/
{
++recvs_posted_matches;
}
mpi__ peruseS$Starget:::PERUSE_COMM_MSG_MATCH_POSTED_REQ
/args[3]->mcs_op=="recv"&&recvs_posted_size>0/
{

--recvs_posted_size;

/+x Collect messages in unexp Q */

mpi_ peruseStarget:::PERUSE_COMM_MSG_INSERT_ IN_UNEX_Q
/args[3]->mcs_op=="recv"/

{

++recvs_unexp_size;

/* Collect messages removed from unexp Q =*/

mpi__ peruseS$Starget:::PERUSE_COMM_MSG_REMOVE_FROM_UNEX_Q
/args[3]->mcs_op=="recv"&&recvs_unexp_size>0/

{

--recvs_unexp_size;

/* Collect messages removed from unexp Q =*/

mpi_ peruseS$target:::PERUSE_COMM_REQ MATCH_UNEX
/args[3]->mcs_op=="recv"/

{

++recvs_unexp_matches;

/* Collect bytes being recieved x/

mpi__ peruseStarget: ::PERUSE_COMM_REQ_XFER_CONTINUE
/args[3]->mcs_op=="recv"/

{

recvs_bytes += args[3]->mcs_count;

END
{
}

To invoke the above DTrace script, you execute the following command.

Q

% dtrace -g -p 10625 -s mpistat.d
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IN(Total) Q-sizes Q-Matches ouT
bytes act posted unexp posted unexp bytes act
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IN(Total) Q-sizes Q-Matches ouT

bytes act posted unexp posted unexp bytes act
15 1 1 0 3 0 0 0
15 1 1 0 3 0 0 0
15 1 1 0 3 0 0 0
15 1 1 0 3 0 0 0
15 1 1 0 3 0 0 0
15 1 1 0 3 0 0 0

MPI PERUSE is a profiling interface integrated into the Open MPI code base [14,
15]. The Sun HPC ClusterTools 8 release will be the first ClusterTools release with
the MPI PERUSE interfaces compiled in. Moreover, as described previously, the
DTrace functionality above was able to leverage the MPI PERUSE infrastructure in
the Open MPI code base to more readily implement DTrace providers.

ZIH, TU Dresden has recently integrated VampirTrace functionality into the
Open MPI code base [16]. VampirTrace can be used to output traces in Open Trace
Format (OTF). Sun HPC ClusterTools 8 will include these VampirTrace traces.

Sun Studio Analyzer can be used to analyze MPI programs. The Sun HPC Clus-
terTools team has added support for MPI states, which can be used by Analyzer to
visualize the progress of the processes in an MPI program.
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4 Sun Product Activity

4.1 Installation

Sun HPC ClusterTools includes Solaris packages and a set of utilities for easily
installing all the ClusterTools packages on a cluster of nodes. Once the installa-
tion is complete, all the ClusterTools software will appear in /opt/SUNWhpc/
HPC<release number>, e.g. /opt/SUNWhpc/HPC7.0. The user can have mul-
tiple versions of ClusterTools installed with each installation varying the target di-
rectory based on release number. There is a tool ctact which allows the user to
activate a particular release number, resulting in symbolic links being created in
/opt/SUNWhpc to the appropriate directories in /opt /SUNWhpc /HPC <release
number>.

The ctinstall script enables installation of the Sun HPC ClusterTools soft-
ware locally on each node or in a single NFS location with symbolic links created
on each node pointing to the NFS location. On a cluster of nodes, ctinstall pro-
vides a convenience in that the software can be installed on all the nodes in a single
command.

As the Solaris packaging system evolves, so will the ability to install Sun
HPC ClusterTools packages efficiently. Similarly, with support on Linux, Sun HPC
ClusterTools will be able to leverage existing installation technologies such as
ROCKS [17].

4.2 MPI Testing Tool

High quality MPI implementations are software packages so large and complex that
automated testing is required to effectively develop and maintain them [18]. Per-
formance is just as important as correctness in MPI implementations, and therefore
must be an integral part of the regression testing assessment. However, the number
of individual tests taken in combination with portability requirements, scalability
needs, and runtime parameters generates an enormous set of testing dimensions.
The resulting testing space is so large that no single organization can fully test an
MPI implementation. Therefore, a testing framework suitable for MPI implementa-
tions must be able to combine testing results from multiple organizations to generate
a complete view of the testing coverage.

Many MPI test suites and benchmarks already exist that can verify the correct-
ness and performance of an MPI implementation. Additionally, MPI implementa-
tion projects tend to have their own internal collection of tests. However, running
a large set of tests manually on a regular basis is problematic; human error and
changing underlying environments will cause repeatability issues.

A good method for regression testing in large software projects is to incorporate
automated testing and reporting, run on a regular basis. Abstractly, a testing frame-
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work is required to: obtain and build the software to test; obtain and build individual
tests; run all tests variations; and report both detailed and aggregated testing results.
Additionally, since the High Performance Computing (HPC) community produces
open source implementations of MPI that include contributions from many different
organizations, MPI implementation testing methodology and technology must also:

* Be freely available to minimize the deployment cost.

» Easily incorporate thousands of existing MPI tests.

* Support simultaneous distributed testing across multiple sites, including operat-
ing behind organizational security boundaries (e.g., firewalls).

* Support on-demand reporting, specialization, and email reports.

e Support execution of parallel tests, and therefore also support a variety of cluster
resource managers.

With Cisco and Indiana University, we have therefore created the MPI Testing
Tool (MTT), an MPI implementation-agnostic testing tool to satisfy these needs,
and have prototyped its use in the Open MPI project. MTT has enabled us to track
regressions on our Solaris clusters on a nightly basis. Moreover, we have extended
MTT to support developer and release engineering environments for building and
installing Sun HPC ClusterTools.

4.3 Documentation

Sun HPC ClusterTools includes a set of user documentation available as a down-
loadable tar-file or online as html- or pdf- files. The documentation set includes
the following:

e Sun HPC ClusterTools Software Migration Guide: collection of hints for users
migrating from Sun HPC ClusterTools 6 to Sun HPC ClusterTools 7 and beyond.

e Sun HPC ClusterTools Software Installation Guide: description of how to install
the ClusterTools software referenced in Section 4.1.

* Sun HPC ClusterTools Software User’s Guide: basic usage of ClusterTools and
the primary commands for compiling and running a parallel MPI job.

e Sun HPC ClusterTools Software Release Notes: a summary of new features in
the latest release and a compendium of significant defects that the user is likely
to experience.

In future releases, there are plans to create an administrator’s guide, an MPI pro-
gramming guide, and a performance guide. Sun has also adapted its MPI man pages
for Open MPI and contributed those to the community.
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4.4 Third party support

Sun HPC ClusterTools supports both the Totalview (by Totalview Technologies) and
DDT (by Allinea) parallel debuggers [19, 20]. To ensure that these parallel debug-
gers work properly with Open MPI, Sun worked closely with the community and
these third-party vendors. In particular, Open MPI has hooks to supply the appropri-
ate symbols to the parallel debuggers. Additionally, Open MPI includes additional
functionality which provides information about MPI message queues to the parallel
debuggers to view the states of these queues.

Sun HPC ClusterTools also supports PBS Professional (by Altair) [21]. Although
Open MPI supports a number of resource managers, Sun does not officially support
all of them. Sun HPC ClusterTools supported PBS Pro before joining Open MPI
and continues to do so. Although Sun does not officially support all the resource
managers, Sun works with its customers to provide a comprehensive HPC stack,
even if some of those components are not provided by Sun.

5 Pros and Cons

This section describes some of the pros and cons of using ClusterTools 7 vs. Clus-
terTools 6.

5.1 Pros

Leveraging the community. With a proprietary MPI implementation, it would be
costly to remain competitive in all state-of-the-art features and technologies. In a
community, we can contribute Sun-focused features and support with advice on
ways to improve those Sun features. Conversely, we benefit from the many impor-
tant new features developed by the research community. For example, the Open MPI
community benefits from research by Indiana University, University of Tennessee,
University of Houston, and HLRS / University of Stuttgart in areas such as fault
tolerance, checkpoint / restart, and collectives.

Clean-slate architecture. The clean-slate approach of Open MPI mirrors what we
would have needed to do with our proprietary implementation to address the in-
creased scalability required not only by the top-tier users but also by the volume
users as MPI becomes more prevalent. The modular architecture of Open MPI is
well-suited for the flexibility needed to address the diversity of users of MPI today.
That is, the ability to plug-in efficient modules for communication and resource
management enables the core MPI implementation to be adaptable to the prefer-
ences of a wide range of users.
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No system-level administration. The architecture for our proprietary ClusterTools
implementation included system-level daemons to support running MPI applica-
tions. If you wanted to run the proprietary ClusterTools, you would need root ac-
cess or use a shared ClusterTools run-time environment. With resource managers
nowadays much more full-featured and assuming most of the responsibilities for-
merly managed by the ClusterTools system-level daemons, it is less important to
have system-level control and more important, at least for developers, to be able to
quickly install and debug a custom self-modified version of the MPI libraries and
the run-time environment totally in user space. Furthermore, there is no dependence
on a system administrator for maintenance or to experience system outages caused
by other users.

5.2 Cons

Robustness. As with any sophisticated software, time and use is needed to shake
out the most critical issues. The Open MPI source-code is only a couple years old as
compared to our proprietary ClusterTools, which had ten years of hardening through
customer use. However, with a large active community and the experience of the
community members, the hope is that the maturity process will happen much more
rapidly than with the proprietary ClusterTools.

No system-level administration. There are always some users who do have root
access and like to have complete control over their MPI jobs and run-time environ-
ment. Also, the run-time environment of the proprietary ClusterTools product had
some important utilities that can be covered by resource managers, but maybe are
not as focused on the MPI environment as much as an integrated run-time envi-
ronment. The Open MPI community continues to develop analogous utilities and
we will also provide utilities to the community and our customers as requirements
dictate.

Synchronization of Sun platforms. The inherent difficulty with the community-
based approach is that the community (and the state-of-the-art) are moving fast and
furious and not necessarily focused on testing every platform. So if you are a plat-
form owner, it is imperative to track regressions on your platform since others may
not realize. The bottom line here is be prepared to dedicate some resources to track
community progress as well as identify and fix issues quickly.

6 Future work and conclusions

For future work, we will draw upon our past experiences and positive attributes as
identified by customers of the proprietary ClusterTools product. For other areas of
future work, we plan to focus on areas that the marketplace dictates.
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Scalability, performance, and robustness remain primary competitive differen-
tiators. Scalability of job startup and collective operations on large clusters have
become as fundamentally necessary as latency and bandwidth performance of basic
communication. When threading is involved in such super-scalable jobs, increased
levels of thread safety will be required by users. In jobs with so many processes,
the robustness of the MPI implementation becomes more important than ever and
better yet the ability to gracefully react to failures of individual nodes and/or pro-
cesses. Processor affinity also remains important to aid in efficient and scalable
shared memory performance.

Beyond continually striving for world-class scalability and performance, increas-
ing the ease-of-use for customers, as with any MPI implementation, is very impor-
tant to help those customers who do not wish to become versed on the subtle details
of the MPI specification and/or the details of a particular MPI implementation.

With insatiable appetite for greater scale and performance and increasing require-
ments for reliability and persistence through failures, it seems such lofty goals are
best-suited for a community approach. Hence, our participation in the Open MPI
community and adoption of the Open MPI open-source code base as the basis for
our MPI product will attempt to leverage the state-of-the-art work of our fellow
community members while we contribute our experience as well in addition to our
product-oriented focus.
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An Integrated Environment For the
Development of Parallel Applications

Gregory R. Watson and Craig E. Rasmussen

Abstract The development of parallel applications is becoming increasingly impor-
tant to a broad range of industries. Traditionally, parallel programming was a niche
area that was primarily exploited by scientists trying to model extremely compli-
cated physical phenomenon. It is becoming increasingly clear, however, that con-
tinued hardware performance improvements through clock scaling and feature-size
reduction are simply not going to be achievable for much longer. The hardware
vendor’s approach to addressing this issue is to employ parallelism through multi-
processor and multi-core technologies. While there is little doubt that this approach
produces scaling improvements, there are still many significant hurdles to be over-
come before parallelism can be employed as a general replacement to more tradi-
tional programming techniques. The Parallel Tools Platform (PTP) Project was cre-
ated in 2005 in an attempt to provide developers with new tools aimed at addressing
some of the parallel development issues. Since then, the introduction of a new gen-
eration of peta-scale and many-core systems has highlighted the need for such a
platform. We describe the current state of PTP, and discuss how a new generation of
tools is going to be required to meet the needs of these architectures.

1 Introduction

Parallel computers have existed in one form or another almost since the first com-
puters were available. The complexity introduced by parallelism was evident from
a very early stage, and has been a major impediment to the adoption of paral-
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lelism in main stream application development. Many programming models and
techniques have been used to improve the simplicity and reliability of parallel pro-
grams. Dozens of new languages and language features were introduced, however
very few are still widely used. In the 1990’s, the Message Passing Interface (MPI)
standardization effort [12] was seen as a major step forward in parallel program-
ming models. The predominant programming models still in use are asynchronous
threads and MPI, although the use of partitioned global address space (PGAS) lan-
guages, such as Unified Parallel C (UPC) [16], appear to be increasing in popularity.
Although the PGAS languages simplify the programmer’s task to some extent, the
potential for deadlocks and other synchronization issues still remain a significant
challenge.

The first integrated development environment (IDE) was introduced when com-
puter input devices became sophisticated enough to support the seamless integra-
tion of development activities. Due to performance and usability issues, however,
there was often programmer resistance to the wholesale adoption of IDEs. The
quality and productivity improvements achieved using IDEs is now well estab-
lished [6, 7, 10, 13]. Combined with improvements to the IDEs themselves, this has
now resulted in IDEs being the predominant environment for software development.
Although a considerable number of IDEs are available today, many are limited to a
single operating system (e.g. KDevelop, Visual Studio), or are proprietary (e.g. Vi-
sual Studio, Xcode, Sun Studio). Eclipse is one of the few truly cross-platform IDEs
that has been designed for extensibility. Interestingly, although IDEs have been used
in the past to aid parallel application development [2, 3, 5, 9], none of these are still
available today. Few developers working on parallel scientific codes use IDEs at all.

The Eclipse Parallel Tools Platform (PTP) was launched in 2005 in an attempt to
address this situation. At this time, beowulf-style clusters had largely replaced cus-
tom proprietary parallel hardware for high performance computing (HPC), however
the predominant parallel application development environment was still command-
line tools. At the same time, the move towards multi-core architectures for conven-
tional applications was outpacing the ability of existing IDEs to provide the tools
necessary to exploit the new technology. As the HPC and conventional architectures
begin to converge, the need for sophisticated tools and new programming models
has become even more urgent.

PTP builds on the exemplary tools available in the Eclipse platform and the
C/C++ Development Environment (CDT) to provide support for C, C++, UPC, For-
tran, and in the future other parallel languages. It is also a platform, so that while
it provides a range of core services and tools, it is also designed to be extended to
support new tools, architectures, and programming models. In addition to Eclipse’s
advanced editing, build, and integrated source code management functionality, PTP
provides four additional features: advanced error checking and analysis tools that as-
sist the programmer to develop parallel applications; runtime monitoring and con-
trol of parallel jobs; debugging support for multi-process applications; and a per-
formance tools framework for the integration of parallel performance tools. In the
first of these, PTP provides a number of tools that are primarily aimed at the MPI
and OpenMP [4] programmer, and that reduce much of the tedious and error-prone
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nature of these programming models. Runtime monitoring and control of parallel
jobs abstracts the interaction between the developer and the parallel system, so that
the developer is able to seamlessly launch and control applications without needing
to focus on specific architecture details. The debugging support provides a paral-
lel debugging platform with basic debug functionality, but that can be extended to
encompass the new debugging paradigms that will be required on peta-scale and
multi-core systems. The performance tools framework allows existing performance
tools to be easily integrated into the Eclipse framework so they are accessible to the
developer.

In the following sections, we will outline some of the challenges faced by devel-
opers and our approach to overcoming these, the architecture and major features of
PTP, and future directions for the PTP project.

2 Challenges

With the growing popularity of multi-core systems as a means of improving ap-
plication performance, parallel programming is set to enter the main stream. Al-
though threads have been used effectively as the predominant programming model
for shared memory architectures, explicit threading is neither easy to program cor-
rectly, nor conducive to retrofitting applications in order to utilize the new architec-
tures. How existing applications will benefit from the new age of parallelism without
huge investments in reengineering is still very much an unanswered question.

In scientific computing, explicit parallelism has been employed with varying de-
grees of success for many years. Unfortunately, the homogeneous architectures that
have facilitated these programming models have reached a practical limit in the
search for peta-scale performance and beyond. One approach to addressing this is
to offload large portions of the computation load onto some form of accelerated
hardware. The result is a very heterogeneous environment that introduces signifi-
cant complexity into the application development process. In an attempt to address
these problems, a large scale effort is underway to develop new programming mod-
els and languages that will reduce the complex and error-prone nature of parallel
application development, and to develop new tools that will aid both legacy and
new applications to extract the maximum performance from the new architectures.
We will not focus on the issues facing scientific application developers any further,
as this has been addressed in detail elsewhere [8].

Since the use of IDEs is predominant across the computing industry, it is not
unreasonable to expect this to continue as the adoption of parallel architectures be-
comes more widespread. Whether the scientific developer community adopts IDEs
in a wholesale manner still remains an open question, but it is the opinion of the
authors that this will be an inevitable result of the complexity of the new platforms.
IDEs like Microsoft’s Visual Studio, Sun’s Studio One, Apple’s Xcode, Eclipse,
and others will need to be adapted to support these platforms, and the languages and
programming models that they encompass. Further, the tools that will be required
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to extract optimal performance will also need to be integrated so that they form a
seamless part of the development lifecycle.

The challenges facing the IDE developer in adapting to this changing landscape
are numerous. Currently most IDEs make a number of assumptions about the envi-
ronment. These include:

e The IDE runs on same platform as the development environment (embedded sys-
tems are a notable exception)

* The developer has exclusive access to resources for development purposes

* Platform parallelism is handled by the operating system (threads/SMP)

e The development toolchain is simple (single pass)

* Optimized performance can be achieved by the compiler, or by manual reasoning
about behavioral characteristics of the program

* Languages will continue to be text-based

e The number of executing tasks is relatively small

In the future, many, if not all, of these assumptions will change. In scientific
computing it is already unusual for computational resources to be available locally,
and development environments are becoming complex enough to require significant
resources in themselves (e.g. building large applications can take many hours). In
these environments, the ability to develop applications remotely will be an important
requirement. Large-scale multi-core systems are likely to require similar remote
development capabilities.

Another assumption that is likely to change is that threading models will con-
tinue to be the predominant paradigm, and hence that parallelism will be managed
transparently by the operating system. The experience from scientific computing is
that parallel applications require significantly more infrastructure than can be pro-
vided by the operating system alone. This has the effect of complicating the build
model (requiring additional libraries, etc.), the runtime environment (applications
can no longer be run by simply launching a single executable), and application de-
bugging. Most tool chains used to build parallel applications currently assume that
the process is a linear sequence of compile and link steps. However, as architectures
become more complex, it is possible that many more activities will be required to
produce an optimized application. For example, multiple programming models may
be combined (as is already required for IBM’s Cell Broadband Engine), or informa-
tion gathered at runtime may be required to augment the static analysis performed
by the compiler.

The DARPA HPCS Language Project [11], an attempt by DARPA to improve
software development productivity, has resulted in at least one parallel language that
is no longer strictly text-based [1]. It may also become necessary to break this link
with traditional text-based languages in order to provide access to new language
features that are precluded by textual representation (visual programming is one
such example.)

The final assumption is also changing swiftly, with peta-scale machines expect-
ing in the order of 1M executing tasks, and existing threaded applications, which
already exhibit thousands of threads, are likely to also increase in size significantly.
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Dealing with large numbers of objects (threads, processes, etc.) raises many scala-
bility issues, both in the ability of the IDEs user interface to display and manage the
objects, and in communication services that are used between remote systems and
the local environment.

All these assumptions can have a profound influence on the architecture and func-
tionality of an IDE, but there are also additional challenges. As programming mod-
els evolve, and new languages are developed, the IDE needs to be able to adapt
without a significant re-engineering effort. This also applies to the new types of
hardware and systems that are currently under development. It is also clear that the
tools required for parallel programming are going to have to be significantly more
powerful that those available today. In particular, it is likely that static analysis of
programs and refactoring will play an important part in making parallel program-
ming more widely acceptable. In order to support these types of tools, an IDE must
provide the necessary infrastructure to make this possible. Such infrastructure is
decidedly more complex than that required for simple syntax highlighting or pro-
viding an outline view of the program, or that is typically available in editors such
as Emacs.

From our early analysis of existing IDEs in 2005, there was only one that came
close to meeting the criteria for a parallel development environment, and that is what
we used for the basis of PTP. Of course, not all the issues have yet to be addressed,
but the flexibility and extensibility of Eclipse will ensure that PTP will be able to
evolve to support the demands of future parallel application developers.

3 Architecture

The Parallel Tools Platform is an extension to the Eclipse platform that fulfills three
main goals: provide the tools and infrastructure necessary for advanced error check-
ing and analysis of parallel applications; provide a runtime environment that allows
developers greater transparency into the systems on which they are developing ap-
plications; and provide a debugger that will allow developers the ability to more
easily locate errors and anomalies in program behavior. In the following sections
we will describe each of these aspects of PTP in more detail.

3.1 Analysis Tools

The PTP analysis tools are aimed at providing Eclipse with an additional feature set
that is designed to aid the development of parallel applications. These tools are cur-
rently targeted at the MPI and OpenMP programming models, but we fully expect
them to be extended to other models or languages as the need arises.
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3.1.1 Advanced Help and Content Assist

Eclipse includes an integrated help system that provides a help browser and con-
text sensitive help that can be accessed directly from the user’s editor session. PTP
augments this help system with MPI- and OpenMP-specific information in order
to improve the developer experience when using these programming models. Ref-
erence information about the MPI and OpenMP API, including arguments, return
type, and a description, are available via the help browser or by simply placing the
cursor over an API in the editor view to activate hover help. The Eclipse content
assist has also been augmented to enable auto completion of APIs and arguments
while typing.

3.1.2 Artifact Analysis

This analysis tool allows the developer to more easily work with MPI and OpenMP
codes by providing a higher level abstraction of the APIs. Like the outline view', the
artifact view shows a list of all MPI function calls, Open MPI pragmas, and other
artifacts in the program. Figure 1 shows the MPI artifact view. Navigation to the
source code location of these artifacts is achieved by clicking on the artifact in the
view, or by using the icons in the navigation bar.

In addition to augmented views, the artifact analysis also provides more advanced
error checking features than are typically available in Eclipse. These are the types
of checks that could be made by compilers, but by providing an integrated tool it is
possible to provide error reporting much earlier in the development cycle. Currently,
checks for many of the known OpenMP programming errors are provided.

[2. Problems | & Tasks [l Console | Properties b Remote Environments #» MP| Artifact View £2 =0

i X v
Artifact Filename LineNo Construct e
T MPIInit MyMPlproject.c Function Call
#»  MPI_Comm_rank MyMPlproject.c 28 Function Call
$  MPI_Comm_size MyMPlproject.c 31 Function Call |
Writable Smar..sert  25:13

Fig. 1 View showing MPI artifacts discovered in the source code

! The outline view provides an outline of the program showing its structural elements.
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3.1.3 Barrier Analysis

The barrier analysis tool can be used to detect potential deadlocks in MPI applica-
tions. The tool does this by identifying the location of all MPI barrier statements” in
the application (which may be scattered throughout the source code), and constructs
barrier matching sets. Each set comprises all the barrier statements that could exe-
cute in parallel. Using this information, it is possible to determine if there are any
barrier statements that do not have a matching barrier, and flag these as potential
deadlock errors. In addition, a barrier view is provided to enable the easy navigation
to barrier statements in the source code. Figure 2 shows an example of the barrier
view containing a list of barrier sets.

(2| Problems | v= Tasks | & Console | Barrier Matches i = O || W Barrier Errors 22 i ¥=40d
i 7 || Barier Matching Set Function
Barrier Matching Set | Function Filename LineNo  |[& || T 'w’frmr nsn
P

=W Barrier 1(2) Barrier MyBarrier.c 8 = ;::’ Eatl (lbarner:s))

WA Barrier 1 Barrier MyBarrier.c 8 w ! Path 2 (0 barier(z)) )

Wi Barrier 3 main MyBarrier.c 41 — J,Ermr . - . main
= W Barrier 2 (1) main MyBarrier.c 31 # 1 Loop (dynamic number of bariers)

W Barrier 2 main MyBarrier.c 3

Fig. 2 View showing barrier matching sets and barrier errors that were discovered using static
analysis

3.1.4 Concurrency Analysis

Like the barrier analysis tool, the concurrency analysis tool is used to detect po-
tential concurrency problems, but for OpenMP (threaded) applications. The con-
currency analysis tool allows the developer to choose a particular expression, and
will evaluate and identify all expressions that could execute concurrently with the
selected expression. Since it is important to ensure that only expected expressions
execute in parallel, this tool can be used to detect potential race and deadlock con-
ditions.

3.2 Runtime Tools

One of the difficulties facing the parallel application developer is the lack of trans-
parency about the behavior and status of applications and the machines that they run
on. Further, many parallel systems have a more complex interface than POSIX-style
execution, and because they are a scarce resource, typically employ a job scheduler

2 An MPI barrier causes each process to wait until all processes have reached a barrier. It is used
to synchronize all processes.
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to manage access to the computational resources. Not only must the developer spend
time learning the interfaces and integrating these with their development processes,
but each iteration of the development cycle can be encumbered with unnecessary
and tedious activities.

To facilitate a more productive development environment, PTP provides a num-
ber of abstractions that simplify the interaction with target systems. The first of these
is a runtime model® that provides an abstract representation of the parallel system
that the developer is interacting with. This model forms the core of a model-view-
controller design pattern around which PTP is based. Information about the parallel
system, and applications running on the system, is fed into the model in the form of
events which update the status of model elements. PTP provides a number of views
into this model that enable the developer to monitor the status of the system and the
applications as they are executing.

fﬁﬁﬁ Machines &2 ARy e |& " B)
ORTE@Clusterl: dyn9002089073.watson.ibm.com - Root [1023]
== dyn9002089073.watson.ibm.com i T A A T A A

20 [ I
<0 [ [ e e o
/GO [ ) e
EO [ I

el )]

Node Attributes Process Info

Arrribute I Value

Fig. 3 View showing the status of the first 220 nodes of a 1024 node cluster

The second abstraction that PTP provides is the notion of a resource manager,
which represents any subsystem that manages resources on a target system. Exam-
ples of resource managers include: MPI runtime systems; job schedulers; virtual
machines; and simulators. PTP allows multiple resource managers to be configured,
and places no restrictions on the location of the resources, so they can be local or re-
mote to the Eclipse environment. Internally, a resource manager is just another part
of the runtime model hierarchy, so the model views can be used to provide a display
of the status of any resource managers that have been configured. Interaction with
remote resource managers is achieved using a small proxy agent that is started on
the remote system using one of Eclipse’s built-in remote service providers. Commu-
nication with this agent can be tunneled over a secure ssh connection to address the
security requirements of many installations. In addition to monitoring activities, the
agent is also used to control resource manager operation, submit jobs for execution,

3 Not to be confused with a programming model. The runtime model only provides a model of the
parallel machine for monitoring and control purposes
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and initiate debug sessions. Figure 3 shows an example of the machines view for a
1024 node cluster.

Launching of parallel applications is managed through the normal Eclipse launch
configuration mechanism. PTP adds a parallel application launch type that allows
the developer to select the resource manager that will be used to control job sub-
mission, and supply resource manager specific attributes that specify resource con-
straints on the job. Once a job has been submitted, the runtime views allow the user
to monitor progress of the job on the target system. Figure 4 shows an example of
the jobs view with a selection of jobs in various states.

2 Jobs 3 ]9 {r- 3 @~ ez = 8)
ORTE@Clusterl: default:job05 - Root [64]

O jopbe ISP PP PP PP I PP PP I I PP P PP
O job03 Uzn»¢oo¢+¢+o¢+¢+¢o»o»¢o
O jobo4 LI IIIIIIIIIIIIII I I PP
2 job05s 'EDQQQQ

Fig. 4 View showing four jobs in various states (red - completed, green - running), and the 64
processes in job05

3.3 Debug Tools

A key aspect of any development process is the ability to effectively locate and
correct program errors. Debugging has traditionally been a difficult area for parallel
application developers, since traditional debugging methodologies only apply when
the number of parallel tasks remains small, and the very act of debugging can perturb
the application enough to make identifying temporal issues very difficult. Very few
parallel debuggers currently exist, so developers have, until recently, only had a
relatively few options:

e Purchase a commercial parallel debugger

e Attempt to use a sequential debugger (such as gdb) or a debugger wrapper (such
as mpigdb)

* Use debug print statements (printf or equivalent)

As only a small number of commercial parallel debuggers exist*, there is little
competition to drive innovation and new functionality, and with only a small poten-
tial market, this can be an expensive debug solution. Also, these debuggers suffer
from scalability problems when debugging applications larger than a few thousand
processes. The gdb or mpigdb options, while cheaper, also suffer from scalability
and usability issues. Neither the commercial nor open source solutions are inte-
grated with a complete development environment, so launching a debug session can

4 At the time of writing only two: TotalView and DDT.
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be a challenging exercise. Using debug print statements, while neither scalable nor
powerful, is at least ubiquitous and easy to use. As a result, this has become the de
facto debugging paradigm for parallel programming.

I3 @3- 0-2- Q- |O-JEIVIS]0 -0 e

& parallel Debug 53\ A TEEEIC IS @+ = 0)
ORTE@Clusterl: default:job04 - Root [32]

£) job02 U@rrrrrrrrrrrrrrrrrrr
£ job04 HE S A A S A S A A S S

%5 Debug 53 N\ o (] = 23 i ¥ =0

8} mpitest [Parallel Application]
&% Process 0
o® Thread [1] (Suspended)
= 1 main() mpitest.c:21 804894f

Fig. 5 Parallel debug view showing a 32 process job being debugged

PTP attempts to overcome these limitations, by providing an integrated parallel
debugger that can be activated whenever the developer requires detailed debugging
information about the application under development. In addition to normal debug-
ging functionality, such as setting breakpoints, single stepping, viewing and altering
variables, etc., the debugger also gives the developer the ability to control and ma-
nipulate arbitrary sets of processes associated with a parallel application as it is
executing. By default, the debugger establishes a set of all processes in the applica-
tion run, and commands such as setting a breakpoint, single stepping, or resuming
execution can be applied to this set of processes. The set can be subdivided into an
arbitrary number of subsets (including individual processes) that allow finer con-
trol of application execution. Figure 5 shows the parallel debug view which allows
manipulation of sets of processes.

Debugger scalability is always an issue, and the PTP debugger is no exception.
However, the debugger infrastructure has been designed to scale, and so far has
proved effective up to the same application sizes that can be handled by the com-
mercial debuggers. In addition, because the PTP debugger is an open architecture,
we hope that it will be used as a platform to develop new debugging paradigms that
will be necessary to deal with applications that comprise hundreds of thousands or
millions of parallel tasks.

4 A Simple Case Study

In the following section, we will present a simple case study on using PTP for de-
veloping an MPI application. This will include describing the steps necessary to
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import and configure an existing MPI application in PTP, locate a potential dead-
lock situation, then launch the application under debugger control. The steps are as
follows:

1. Import the source files into an Eclipse-controlled project

2. Configure the project to correctly locate external tools (e.g. the mpicc com-
mand)

3. Run the barrier analysis on the source code, and correct any potential deadlock
errors

4. Build the executable

Configure a launch configuration

6. Start a debug session

d

4.1 Importing

Eclipse offers a range of options for importing an existing application so that it can
be developed using PTP. We will describe the three main types here.

* Copying into the workspace. This first option allows an existing project to be
copied into the Eclipse workspace. It is useful if the developer wishes to keep the
original source files pristine, or if Eclipse will be used as the primary develop-
ment environment.

* Linking to an external project. This option allows an existing project to be used in
Eclipse, but without disturbing the location or layout of the files. Eclipse creates
an internal link to the project, so that the project files appear in the user interface.

e Checking out from a source code repository. This option allows a copy of
project controlled by a source code repository’ to be checked out into the lo-
cal workspace. Modifications to files are automatically detected by Eclipse, and
the developer can perform operations such as committing changes, comparing
versions, merging, branching, etc.

The developer simply selects the import method they desire, and imports the
source code into the Eclipse workspace. Eclipse is scalable enough to support very
large projects (thousands of files, millions of lines of code). Activities such as in-
dexing the source code (used for advanced searching, content assist, type and call
hierarchy views), are potentially long running and automatically take place in the
background without affecting the developer.

3 Eclipse supports CVS, SVN, and other repositories.
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4.2 Configuring

Projects controlled by Eclipse have a large number of configurable options. Since
this application is using MPI, we require it to be compiled and linked with the
mpicc command. Also, the MPI analysis tools need to know the location of the
MPI header file mp1i . h, so this also has to be added to the project configuration.
In Eclipse, building a project is controlled by a toolchain®. Both the compiler name
and the include path are set by modifying the toolchain options for the project.

4.3 Analyzing

The barrier analysis tool is invoked on the project using a special menu on the
Eclipse foolbar’ . The analysis will scan all source code in the project and compute
the barrier sets. Markers indicating the location of potential errors will be placed on
corresponding source files and when the source file is opened, at the source line lo-
cation in the file. The developer can now use this information to correct the deadlock
situation.

4.4 Building

Eclipse projects can be configured to automatically build each time an editor change
is saved, or by manually invoking the build command from an Eclipse menu. While
the build is running, the developer is able to continue to modify the source, perform
analysis, or undertake other activities that are not dependent on the build complet-
ing. Build progress is displayed in a special Progress view, that provides an estimate
of the percentage completed. Detailed output from the build is available in the Con-
sole view. If any errors are detected by the compiler or linker steps, the build will
terminate, and a list of the errors will be displayed in the Problems view. Markers
will also be placed on source files and displayed in the editor.

4.5 Launching

Once the build is complete, the developer must configure a launch configuration to
run (and debug) the application. A single configuration is used for both running and

6 A toolchain describes the sequence of commands required to convert the source code into a binary
executable.

7 The toolbar provides quick access to commonly used functions via a series of icons at the top of
the Eclipse window.
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debugging. The launch configuration specifies the attributes needed to launch the
application, such as the executable name, command line arguments, environment
variables, etc. These attributes are saved in the configuration, so they only need to
be specified once. After creating the configuration, the application can be run or
debugged by clicking a single button on the toolbar.

4.6 Debugging

When the developer is ready to debug the application, a single button click will in-
voke the debugger. Eclipse will automatically switch to display views for controlling
the application (e.g., single stepping), examining stack frame location, viewing vari-
ables, etc. Breakpoints can be set directly in the source code editor view by clicking
on the left edge of the view. Once the debug session is completed, the developer can
switch back to the runtime and editor views with a single click.

5 Future Directions

There are many aspects of parallel application development for both peta-scale and
the emerging multi-core systems that still remain a major challenge. The current
programming models are unlikely to be adequate for applications designed to run
on peta-scale systems, and much more powerful tools will be required to optimize
performance for the next generation of heterogeneous hardware. If multi-core sys-
tems are going to become the performance panacea, then application developers
will need programming models and languages that are as simple and easy to un-
derstand as those being used today. Eclipse and PTP are well placed to assist with
both these environments. In the following sections, we briefly examine areas where
future development of PTP appears promising.

5.1 Analysis Tools

There are a number of tools available that provide analysis information that can be
derived from running the application, such as trace and profile information, and that
could be used to augment static analysis and provide greater insights into program
operation. In addition, there are opportunities to better utilize compiler generated
information to assist in the application development process. One such tool being
actively developed will use compiler generated parallelization analysis to aid the
developer in parallelizing selected code regions.



32 Gregory R. Watson and Craig E. Rasmussen

5.2 Performance Tools

PTP provides a performance tools framework for integrating performance tools with
Eclipse, however this is only a small part of the functionality required to support in-
tegrated performance analysis and optimization of parallel applications. Ideally, the
developer should be able to invoke a performance analysis tool as easily as launch-
ing or debugging the application, have the data automatically collected and ana-
lyzed, and the results used to annotate the source code. The Tuning and Analysis
Utilities (TAU) have already been integrated with PTP, and a number of other per-
formance tools groups are also exploring Eclipse as a delivery platform. However,
there is still much work to do to ensure that performance tools can be easily and
effectively used as part of the development workflow.

5.3 Multi-core Tools

The current PTP tool set has been targeted primarily at distributed memory archi-
tectures and programming models (with the exception of OpenMP), however there
is a growing requirement for tools to ease the transition from existing architectures
to multi-core systems. At least three kinds of tools could benefit these applications:
tools to aid in parallelizing sequential applications in order to make better use of
the increased compute resources; performance analysis tools specifically targeting
applications running on multi-core systems; and debugging tools that better manage
the extra complexity introduced by multi-core architectures.

5.4 New Languages and Programming Models

A variety of efforts are underway to develop new languages and programming mod-
els for parallel computing. In addition to the DARPA HPCS Language Project,
there are also projects aimed at enhancing existing languages, such as UPC, Co-
Array Fortran (CAF) [14], and Titanium [18], that add new functionality to better
support parallel programming. New programming models, such as Asynchronous
Partitioned Global Address Space (APGAS), on which IBM’s X10 language [17] is
based, are being developed. There is considerable scope for adding support for these
languages and programming models to PTP.

5.5 New Debugging Methodologies

The existing interactive debugging methodology for parallel applications is not sig-
nificantly different from that used for sequential applications. However, as the size
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of applications increases to peta-scale and beyond, it is not clear that this method-
ology will remain effective. In particular, if applications comprise millions of con-
currently executing tasks, just identifying which tasks are the source of the errors is
likely to become a highly challenging activity. The rich user interface and extensi-
bility of Eclipse provides an exciting opportunity to investigate new techniques for
analyzing, locating, and correcting errors in parallel programs.

6 Conclusion

The quest for greater hardware performance is driving a significant change in the
application development landscape. Both the scientific and mainstream computing
communities are facing the challenge of developing parallel applications that are
able to extract maximum performance from the new hardware. There is no doubt
that new tools, languages, and programming models will be needed to assist the
developer to reach this goal.

Although a number of integrated parallel tool environments have been developed
in the past, none are still in wide use today. It’s possible to speculate on the reasons
for this, but one factor is clear: none have been based on a framework that enjoys the
enormous popularity and the advanced features of the Eclipse platform. In addition
to an open, portable and robust platform, Eclipse also provides an extensive array of
advanced tooling that can be used by tool developers to create an integrated solution
to a wide array of programming activities.The Parallel Tools Platform builds on this
solid foundation, and provides an additional framework for developing and integrat-
ing tools for developing parallel applications. Currently, PTP provides a range of
tools that provide advanced error checking, static analysis, runtime monitoring and
control, and debugging services.

In addition to the existing tools, there are a number of efforts underway to im-
prove the range of tools and functionality that PTP provides. This includes extend-
ing the analysis support to encompass dynamic analysis, and better integration for
performance analysis tools. There are also active projects to enhance the ability of
Eclipse to work in distributed development environments, and to improve the refac-
toring support that is available for existing programming languages.

PTP is still a very young project, and there are many opportunities for improving
the capabilities to suit the advances in computing technology that will be introduced
over the next few years. The integrated nature of the platform also offers scope
for developing new tools, that may have not been possible in the past, to deal with
programming challenges that will be faced by both the peta-scale and many-core
communities.
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Debugging MPI Programs on the Grid using
g-Eclipse

Christof Klausecker, Thomas Kockerbauer, Robert Preissl, and
Dieter Kranzlmiiller

Abstract With the increasing need for more computational power rises the number
of processors in modern high performance computers. Coupled to the scalability
of the system, the complexity of the communication between these processors in-
creases vastly. This development can also be seen in today’s Grid infrastructures,
where high numbers of resources are shared over long distances. As a result, there
is an intensified need for tools to support debugging and program understanding.
The focus of this work is on MPI applications running on Grid sites, and we de-
scribe the corresponding functionality of g-Eclipse’s developers perspective. The
g-Eclipse framework is based on the open source Eclipse platform and extends its
functionality by middleware independent plug-ins for Grid users, operators and de-
velopers. The provided functionality of the developer perspective includes remote
building, debug support for individual MPI processes as well as graphical represen-
tation of message-passing based communication. This paper provides an overview
of each of these functions and examples for their application in program develop-
ment.

1 Introduction

Grids today are established as a tool for scientists to solve their scientific prob-
lems. In order to utilise Grids, developers can either use the low-level functionality
of the individual Grid middleware, or work with independent development tools.
Apart from tools such as the Grid Development Tools (GDT) [2], which is based
on Globus Toolkit 4 (GT4) and service-oriented Grid computing there are not many
integrated development environments for Grid infrastructures available. To remedy

GUP - Institute of Graphics and Parallel Processing, Joh. Kelper University Linz,
Altenbergerstr. 69, A-4040 Linz, Austria/Europe, http://www.gup.jku.at/,
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this, g-Eclipse [16] 12 is being developed - an integrated and user-friendly middle-
ware independent environment.

The g-Eclipse framework provides a set of tools for different Grid actors offering
them three perspectives, supporting their role of either being a user, an operator or a
developer, developing applications for the Grid. Among other tools the event trace
and debugging functionality of g-Eclipse as described in this paper is settled in the
developers perspective.

This paper presents some aspects of the g-Eclipse’s developer perspective with
focus on the parts dealing with MPI applications running on Grid sites. The paper
is organized as follows: The next section provides an overview of related work in
this domain, followed by an overview of the approach in Section 3. The individual
components, the remote builder, the grid application launchers, and the trace viewer
are described in Section 4-6, before a summary and an outlook on future work con-
cludes the paper.

2 Related Work

From a chronological view point, the tools ATEMPT [3] and DeWiz [5] are seen
as the predecessors of the event trace functionality in g-Eclipse. The experiences
gathered with the design and usage of these tools were the main influences during
the development of the trace visualization component for g-Eclipse.

Apart from the two tools mentioned above, several other similar examples exist,
including Vampir [9] and Jumpshot [17] which mainly focus on performance visual-
isation. Other approaches providing debugging support for applications running on
the grid include tools like Worgbench [7], Net-dbx-G [11] and a grid-enabled ver-
sion of p2d2 [4]. The Worgbench framework allows to debug remote programs run-
ning in a Globus Toolkit 4 (GT4) environment, by adding an additional web-service
to it. While it offers integration into Eclipse using its own debugging front-end, it
does not provide support for executing MPI programs on the grid. Net-dbx [10] is a
Java based tool allowing to debug MPI applications over the internet. With Net-dbx-
G an enhanced version that supports grid environments exists. It offers a graphical
user interface implemented as Java applet, thus allowing to debug applications by
solely using a web browser. The p2d2 project created a client-server based debug-
ging architecture which provides its own graphical user interface, however the tool
is not publicly available.

Another related project is the Parallel Tools Project (PTP)?, which like g-Eclipse
is hosted by the Eclipse Foundation. It provides support for debugging parallel pro-

! o_Eclipse is a two-year project funded under the European Union’s 6th Framework Programme,
Contract Number IST-0343272. Since the end of October 2006, g-Eclipse is also an official Eclipse
Technology Project.

2http://www.geclipse.eu/
3http://www.eclipse.org/ptp/
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grams in Eclipse by offering a scalable parallel debugger. Yet, it has no explicit
support for grids.

3 Overview of g-Eclipse Approach

The g-Eclipse approach consists of three major components:

¢ Remote Builder
* Grid Application Launchers
e Trace Viewer

The builder compiles and links programs remotely, launchers take care of running
and debugging applications on the grid, and a graphical component allows to anal-
yse the communication between parallel processes based on pre-recorded program
traces.

Figure 1 shows the developed components put together into an Eclipse perspec-
tive, allowing to conveniently debug remote running MPI applications from the local
desktop.

(e Edt Refactor Nmegate Segrch  Eroject Hun  Window  Melp

e o e e Q-0 o2 @ e & [#5babug| »
3 Dabug §2 = 0| [ samplec 2 = O |t Variablen 5 %y Breskpoints 0
= nctusl commumication = = T =
int sen I & 8| &
dnt rec s
e [ ] i drun_procet=1) { Hame Valus Hi
— a tar (1s0; Ry
= [T M Grid Example [CIC++ Grid MP1Ap L~ or i} “,_l_:-"dl-:ﬁrzu 100l f o4 arge 3
b @8 gdb rem GREr - precess 0 for (i=0; i-<num_pracs: i+l { b * arge Oubfisldes
= if dmy_idi=i) { .
P &% gdb rom oer < procans 118 [ bsend 1, HPTTNT, 4, 0,MPT, W el o
= {8 gdb rem ager - pracess 7 3 b e um_proce 4
w 4 Thread |1} (Suspended: Breakp + else { ) 0
1 WL Mecolbeets, 1, MPT_TNT, §, 0, HPT_COMM WOl (T 2
b &8 gdb remote Debugger - process 3 ] ' b bt oabfUslaze
o pdb (B/28/07.4:50 PM) 4 T 0
# heydra, gup uniding ac. st simple (8 primtf{‘rank : %1 volue: Si\n", wy_id. reevl;
o WPL_Finalizel):
wi 9db (2007450 PH) retam
ol by gup uniding ac at simple (87§ 5}
o odb (B/28/07.4°50 FH)
5 hydra.gup.unidinz ac.at simple (8% -
— Wbt Bt Al B consele 2 T Properties ) Termical| = 0 -( Trace Viewer 1 oo = =0
I 0
| MPI Grid Example [CAC++ Grid NP1 Applicatsan] hydrs. guy
@ Process View 5 D n a5 E |{ ré @e Fie
Pratrases rank :  loep: 0123
jl=lmials I ./P

trace 000 5

Fig. 1 Debug perspective showing the views for MPI debugging

The debug view (a) of Eclipse’s standard debug perspective lists the remote run-
ning MPI processes. To provide a better overview of the processes and their current
state, the so called “Process View” (b) which displays a graphically representation
of each process can be used. Both of these views allow to steer the remote running
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application by stepping through the program or resuming the debugee. The variables
view (c) shows the content of the selected process’ variables. The in- and output of
the remote running application are connected to the standard Eclipse console (d),
thereby providing the possibility to interact with the program. The C/C++ editor (e)
provided by CDT is used to display the source code. The trace viewer (f) shows a
pre-recorded trace allowing post-mortem analysis of the inter-process communica-
tion.

4 Remote Builder

An integral part of the functions of an Integrated Development Environment (IDE)
is the possibility to build projects from source code after modifying the code or
changing the resource where it should be executed. In the best case, this should
happen in a convenient way without forcing the user to leave the environment and
to enter cryptic commands on a console. A compiler and the corresponding linker
have to be executed somehow to create the binary executable file. The possibility to
build projects is also required during the debugging process, which is an iterative
process that requires source code changes, and is often carried out in a trial and error
fashion. However, running and debugging applications on a remote host introduces
a series of difficulties.

The simplest solution would be to compile the application on the local machine
and afterwards stage the executable to the grid. This would require a homogeneous
environment, which is per definition unrealistic in the grid world. In reality not only
the grid itself is heterogeneous, but the users, who develop and debug the appli-
cations, also have different operating systems with different libraries running on
machines with different architectures. Furthermore specific libraries, like for MPI,
are usually not installed on a desktop machine. As a result locally compiled binaries
may not be executable on the remote machine. In addition, some operating systems
do not even offer pre-installed compilers and linkers.

A possible solution would be to set up a complex cross compiling environment.
However the grid itself is heterogeneous, therefore this environment would have
to be reconfigured in case the developer wants to run his application on a node
with a different set-up. Another possibility is to transfer the sources to the remote
machine, compile them there and finally transfer the executable back to the local
machine where it is needed for debugging. These steps which have to be repeated
each time the source code is changed, may get extremely annoying, especially in
case of debugging where only small changes in the code are performed.

Therefore we added our own builder, the so called “Remote Builder” which can
be activated for C/C++ Development Tooling (CDT)* Makefile projects. The remote
builder uses GridFTP [1] for data transfer and glogin [13] for command invocation,

‘http://www.eclipse.org/cdt/


http://www.eclipse.org/cdt/

Debugging with g-Eclipse 39

both connections stay alive to improve responsiveness. The output of the build pro-
cess is used to mark potential errors in the local source code editor.

5 Grid Application Launchers

After building a project, so-called launchers take care of running and debugging the
applications. Usually in Eclipse, these launchers start the applications locally, but in
a grid environment they should be started remotely on the grid resources.

For this reason we created our own launchers, in particular a newly developed
launcher called “C/C++ Grid MPI Application Launcher”. Again glogin is used to
create interactive connections to the desired sites in the grid. Using this connection
the application, which already resides on the remote host because of our remote
builder, is started. In case of debugging, for each process of the parallel applica-
tion, a GNU Project Debugger (GDB) [15] instance is started and attached to the
respective MPI process. The standard input and output of those debuggers are redi-
rected to network sockets, which in turn get forwarded to the local machine, where
g-Eclipse is running, using glogin’s traffic forwarding capabilities [14]. On the local
side, instead of creating real instances of GDB, the forwarded streams of the remote
debuggers are connected to the debugging functionality provided by the CDT. By
doing so the debug perspective of Eclipse acts as if it were using a local gdb to
debug the application. This circumvents the problems that would arise when using
the combination of gdb and gdbserver for remote debugging, like having a local gdb
matching the remote architecture and the need to have the shared libraries of the
remote machine available locally. Due to the fact that we use the input and output
of the remote debuggers, there is no need for a local GDB at all.

The most important fact is, that instead of allowing to debug only one process,
we add every process of the MPI application to the application launch, thus allowing
to conveniently control the whole remote running MPI application from our local
machine. In addition to the launcher allowing to run and debug MPI applications
on the grid, two further launchers were created. One allows to run and debug nor-
mal C/C++ applications on the grid, while the other one is used for running and
debugging JAVA applications on the grid.

6 Trace Viewer

6.1 Visualization of Message Passing Programs

The Trace Viewer is a tool to visualise and analyse the communication of parallel
message passing programs. As mentioned in the related work section above, several
similar tools already exist. However many of these tools were developed some time
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ago, thus relying on outdated GUI libraries, and some of them are only commer-
cially available. This made it virtually impossible to integrate one of these tools into
the Eclipse IDE. The integration, however, was one of our main objectives, in order
to provide one workspace incorporating all tools.

Moreover few of these trace visualisation tools were designed to be extensible,
especially not by using such a powerful concept like Eclipse’s OSGi> based plug-
in architecture. This extensibility however was needed in order to add the desired
functionality and to allow to improve the Trace Viewers capabilities in the future.

Therefore a new component with attention to flexibility and extensibility is pro-
vided in g-Eclipse. This newly-created tool named Trace Viewer uses the Standard
Widget Toolkit (SWT)® to draw the visualisations. The Trace Viewer is integrated
into g-Eclipse but can be used as a stand-alone Rich Client Platform (RCP)’ appli-
cation as well. After careful consideration and with future fields of application in
mind, four major points which need extensibility, were identified. To make use of
one of the extension points a new plug-in must implement well defined interfaces
which are provided within the basic Trace Viewer plug-in.

6.2 Trace Providers

The first extension point allows plug-ins to add trace providers which, as their name
suggests, provide trace data. This trace data in turn can be displayed using plug-ins
implementing the visualisation extension point.

An implementation of a trace provider must at least support logical clocks. Ad-
ditionally it may also support lamport as well as physical clocks, provided that the
data source offers such information.

A trace provides processes which can be queried by their process id. The pro-
cesses allow, depending on the implementation, to query events according to their
logical, lamport or physical clocks. An event can be of one of the four basic sup-
ported types namely: “send”, “receive”, “test” and “other”. It is possible to provide
information beyond the provided interfaces, that gets displayed in the properties
view (Fig. 2) or can be used for trace format specific plug-ins.

Currently trace readers for two different trace formats are implemented. Both of
these readers provide events with logical, physical and lamport clock information.
The first reader allows to open the NOPE [6] trace format and is already in a mature
state. The latter one adds preliminary support for the Open Trace Format (OTF) [8].

Shttp://www.osgi.org/
6 http://www.eclipse.org/swt/
7 http://www.eclipse.org/rcp/
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6.3 Visualisations

The visualisation extension point allows visualisations to be added to the Trace
Viewer. As already mentioned visualisations take care of displaying information
made available by a trace provider. There are already three implementations which
make use of this extension point. The first one (Fig. 3) visualises the trace data ac-
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Fig. 3 Trace viewer showing a trace using lamport clocks

cording to the events’ lamport clocks. The second visualisation (Fig. 4) uses the
physical timestamps of the events. The last visualisation called “statistics visuali-
sation” (Fig. 5) is just a proof of concept, which was developed to demonstrate the
flexibility of this tool. It makes use of the Business Intelligence and Reporting Tools
(BIRT)®, which is also an Eclipse project, and its Chart Engine. Currently this vi-
sualisation just displays some statistical information, like the relation between the
time spent with communication and the time spent doing actual calculation.

8http://www.eclipse.org/birt/
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Fig. 4 Trace viewer showing a trace using physical clocks
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Fig. 5 Example visualisation plug-in showing statistical information about the trace

This can be done for all processes cumulatively using a pie chart, or for each
process individually using a stacked bar chart, where each process is represented by
a separate bar.

6.4 Actions

The actions extension point allows to register entries to a popup menu. This menu
is displayed on right click on an event in the trace viewer and allows to perform
actions on the selected event. It can be very useful to connect the trace viewer to
other Eclipse components. Current implementations include a goto-source action
and a breakpoint action. Both of these actions make use of the source file and source
line information contained in events, provided for example by the NOPE trace file
format. The goto-source action is relatively simple, on activation it searches the
workspace for the appropriate source file, opens a source editor and jumps to the
respective source line. The breakpoint action allows to visually set breakpoints on
events in the graph. Since the source level debugger doesn’t know the concept of
events, the breakpoint action is more complex, because it has to deal with loops in
the source code leading to multiple events per source line.
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6.5 Markers

Another extension point allows to register so called markers. A marker can be used
to alter the appearance of an event by changing its colour or shape. This functionality
can be practical for different use cases. Tasks where it has already proven its viabil-
ity are for example the nope-, cause-effect- and debug-marker. The NOPE Marker
was developed, because the Trace Viewer only distinguishes between four different
event types. However the NOPE trace format stores additional information about
the specific MPI event type. This so called sub type information allows for example
to distinguish between a MPT_Send and a MPI_TIsend event. While without the
NOPE Marker all events of one of the four types would look alike in the graphical
representation, enabling it allows to give different sub types different appearances.
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Fig. 6 Marker showing the cause-effect relationships of the events

The “cause effect” marker (Fig. 6) shows the relationships between a selected
event and the other events in the trace by comparing their vector clocks. It marks
events that affect the selected event, events that get affected by the selected event
and independent events with different colours.
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Fig. 7 Marker showing breakpoints on the events

The third provided marker is the breakpoint marker (Fig. 7). This marker allows
to display the breakpoints created using the breakpoint action in the graph.
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7 Conclusions and Future Work

The current version of g-Eclipse is already used in a series of grid projects. At
this point in time, we are gathering experiences from the user to improve the func-
tionality even further. For example, to provide an insight into the communication
structures, especially of large traces, we are working on different pattern matching
techniques. We introduce an algorithm to extract repeating communication patterns
from MPI traces automatically to provide an easy and high-level understanding of
the parallel application’s communication behaviour. This would not only provide
a high-level, abstract understanding of the behaviour of parallel applications, but
would also support more directed performance optimization [12]. In addition, pat-
terns also provide the possibility to quickly spot errors in the communication struc-
ture of an application, for example by revealing breaks in pattern sequences (Fig. 8)
or by showing a mismatch between the actually recorded patterns and an applica-
tion’s intended structure. The main challenge is to efficiently detect such patterns
from MPI event traces of long running and/or large scale applications. We imple-
ment the pattern search as a two step process: first we find locally repeating se-
quences on each process using a suffix tree algorithm and then match these local
repeats with other sequences on other processes to generate global communication
patterns.
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Fig. 8 Pattern matching plug-in that searches and marks repeating communication structures
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Enhanced Memory debugging of MPI-parallel
Applications in Open MPI

Shiqging Fan, Rainer Keller, and Michael Resch

Abstract In this paper, we describe the implementation of memory checking func-
tionality based on instrumentation using Valgrind-Memcheck tool. The com-
bination of Valgrind based checking functions within the MPI-implementation
offers superior debugging functionalities, for errors that otherwise are not possible
to detect with comparable MPI-debugging tools. The functionality is integrated into
Open MPI as the so-called memchecker-framework. This allows other memory
debuggers that offer a similar API to be integrated. The tight control of the user’s
memory passed to Open MPI, allows not only to find application errors, but also
helps track bugs within Open MPI itself. We describe the actual checks, classes of
errors being found, how memory buffers internally are being handled, show errors
actually found in user’s code and the performance implications of this instrumenta-
tion.

1 Introduction

Parallel programming with the distributed memory paradigm using the Message
Passing Interface MPI [4] is often considered as an error-prone process. Great effort
has been put into parallelizing libraries and applications using MPI. However when
it comes to maintaining the software, optimizing for new hardware or even porting
the code to other platforms and other MPI implementations, the developers will face
additional difficulties [1]. They may experience errors due to hard-to-track timing
critical bugs, deadlocks due to communication characteristics, MPI-implementation
defined or even hardware dependent behavior. One class of bugs, that are hard-to-
track are memory errors, specifically in non-blocking and one-sided communica-
tion.

Hochstleistungsrechenzentrum Stuttgart (HLRS), Nobelstrasse 19, 70550 Stuttgart, Germany, e-
mail: {fan, keller, resch}@hlrs.de
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In this paper, we introduce a debugging feature based on instrumentation func-
tionalities offered by Memcheck [6] tool of Valgrind-tool suite [6], that is being
employed within the Open MPI-library. The user’s parameters, as well as other non-
conforming MPI-usage and hard-to-track errors, such as accessing buffers of active
non-blocking operations are being checked and reported. This kind of functionali-
ties would otherwise not be detectable within traditional MPI-debuggers based on
the PMPI-interface.

The structure of this paper is as follows: section 2 shows the basic idea and
functionalities of Memcheck; section 3 gives an introduction to the design and
implementation in both non-blocking and one-sided communication of Open MPI;
in section 4, we show the performance implications of these two scenario; then in
section 5 we present the real work, i.e. the errors, that are being detected and have
been detected so far; finally, in section 6, we make a comparison with other available
tools and concludes the paper with an outlook of the future work.

2 Overview of Memcheck

The tool suite Valgrind [6] may be employed on static and dynamic binary ex-
ecutables on x86/x86-64 and /PowerPC32/64-compatible architectures. It op-
erates by intercepting the execution of the application on the binary level and inter-
prets the instructions. With this instrumentation, Valgrind tools then may deduce
information, and perform checks of different methodologies.

The system core of Valgrind provides a synthetic CPU. When the application
starts, Valgrind will “trap” the real CPU, and run the machine code on its syn-
thetic CPU, meanwhile, the debugging information is read from the executable and
associated libraries. This instrumentation for the Valgrind-parser uses processor
instructions that do not otherwise change the semantics of the application. By this
special instruction preamble, Valgrind detects commands to steer the instrumen-
tation. On the x86-architecture, the right-rotation instruction ror is used to rotate
the 32-bit register edi, by 3, 13, 29 and 19, aka 64-Bits, leaving the same value in
edi; the actual command to be executed is then encoded with an register-exchange
instruction (xchgl) that replaces a register with itself (in this case ebx):

#define _ SPECIAL_INSTRUCTION_PREAMBLE \
"roll $3, %%edi ; roll $13, %%edi\n\t" \
"roll $29, %%edi ; roll $19, %%edi\n\t" \
"xchgl %%ebx, %%ebx\n\t"

)
o
)

o

Memcheck, a heavyweight memory checker in the Valgrind-tool suite, is
well known for its tracking of memory definedness down to the bit level, which
guarantees the partial defined bytes are also correctly dealt with. It stores two kinds
of shadow memory values, for addressability and definedness, Memcheck shadows
each byte in memory with the information presenting that whether the byte has
been allocated (so-called A-Bits) and for each bit of the byte, whether it contains a
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defined value (so-called V-Bits). With this AV-bit pair implementation, Memcheck
is able to provide bit-precision checks of program errors as they run. It tracks the
addressability of every byte of memory and the definedness of every bit of data in
registers and memory, so that it can detect accesses to unaddressable memory errors
and use of undefined value errors, such as buffer overruns and faulty access to stack.
In total, every byte of memory is shadowed with 9 bits values (one A bit plus eight
V bits). Memcheck also tracks all heap blocks allocated withmalloc (), new and
new [ ] to detect bad or repeated frees of heap blocks and memory leaks. Arguments
to functions like strcpy () and memcpy (), are also checked for overlaps.

However, the disadvantage of using Memcheck is the slowdown of running ap-
plications, which is caused by adding code to check every memory access and every
value computed. The size of the code is increased at least 12 times normally, and it
runs 25-50 times slower than natively.

In this paper, we will describe the implementation of integrating Memcheck as
a component of Open MPI, which helps MPI application and Open MPI develop-
ers track the wrongly use of memory, such as reading or writing to buffers of ac-
tive, non-blocking Recv-operations and writing to buffers of active, one-sided Get-
operations, as well as checking definedness of Open MPI-internal data structures,
such as requests, communicators and datatype information.

3 Design and Implementation

In order to find MPI-related hard-to-track bugs in the application (and within Open
MPI for that matter), we have taken advantage of an instrumentation-API offered
by Memcheck. To allow other kinds of memory-debuggers, such as bcheck or
Totalview’s memory debugging features [8], we have implemented the functionality
as a module into Open MPI’s Modular Component Architecture [10]. The module
is therefore called memchecker and may be enabled with the configure-option
--enable-memchecker.

This may detect memory access bugs, such as buffer overruns and more, but also
by knowledge of the semantics of calls like strncpy. However, Valgrind does
not have any knowledge of the semantics of MPI-calls. Also, due to the way, how
Valgrindis working, errors due to undefined data may be reported late, way down
in the call stack. The original source of error in the application therefore may not be
obvious.

3.1 Non-blocking Communication

In Open MPI objects such as communicators, types and requests are declared as
pointers to structures. These objects when passed to MPI-calls are being immedi-
ately checked for definedness and together with MPI_Status are checked upon
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exit!. Memory being passed to Send-operations is being checked for accessibility
and definedness, while pointers in Recv-operations are checked for accessibility,
only.

Reading or writing to buffers of active, non-blocking Recv-operations and writ-
ing to buffers of active, non-blocking Send-operations are obvious bugs. Buffers
being passed to non-blocking operations (after the above checking) is being set to
undefined within the MPI-layer of Open MPI until the corresponding completion
operation is issued. This setting of the visibility is being set independent of non-
blocking MPI_TIsend or MPI_Irecv function. When the application touches the
corresponding part in memory before the completion with MPI_Wait, MPI_Test
or multiple completion calls, an error message will be issued. In order to allow the
lower-level MPI-functionality to send the user-buffer as fragment, the lower-layer
BTLs (Byte Transfer Layers) are adapted to set the fragment in question to acces-
sible and defined, as may be seen in Fig. 1. Care has been taken to handle derived
datatypes and it’s implications.

Proc0 Procl | Application | | Buffer |
MPI_TIsend

Frag
Inaccgcssible i’IPI_IrElcV | oT | | |
* naccessible )
Undefined & Vi
MPI_Wait \ Undefined | T || e |

MPI_Wait | BTL | [ ] |

Fig. 1 Fragment handling to set accessibility and definedness, non-blocking communication

For Send-operations, the MPI-1 standard also defines, that the application may
not access the send-buffer at all (see [4], p. 30). Many applications do not obey this
strict policy, domain-decomposition based applications that communicate ghost-
cells, still read from the send-buffer. To the authors’ knowledge, no existing imple-
mentation requires this policy, therefore the setting to undefined on the Send-side is
only done when strict-checking is enabled (see Undefined” in Fig. 1).

3.2 One-sided Communication

For one-sided communications, MPI-2 standard defines that, any conflicting ac-
cesses to the same memory location in a window are erroneous (see [5], p. 112).
If a location is updated by a put or a accumulate operation, then this location can-
not be accessed by a load or another RMA operation until the updating operation
is completed on the target. If a location is fetched by a get operation, this location

I E.g. this showed up uninitialized data in derived objects, e.g. communicators created using
MPI_Comm_dup
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cannot be accessed by other operations as well. When a synchronization call starts,
the local communication buffer of an RMA call and a get call should not be updated
until it is finished. User buffer of MPI__Put or MPI_Accumulate, for instance,
are set not accessible when these operations are initiated, until the completion oper-
ation finished (see Fig. 2). Valgrind will produce an error message, if there is any
read or write to the memory area of the user buffer before corresponding completion
operation terminates.

In Open MPI, there are two One-sided communication modules, point-to-point
and RDMA. Similar checks has been implemented for MPI_Get,MPI_Put,MPI_
Fence and MPI_Accumulate in point-to-point module.

Proc0O Procl Proc0O Procl
MPI_Put

. Fragg ] Frag,
Inaccessible % MPI_Acc Inaccessible %
& Inaccessible & Inaccessible
Undefined & Undefined &
 Undefined \ Undefined oy poned \: Undefined

MPI_Fence MPI_Fence

Fig. 2 Fragment handling to set accessibility and definedness, one-sided communication

4 Performance Implications

Adding instrumentation to the code does induce a slight performance hit due to
the assembler instructions as explained above, even when the application is not run
under Valgrind.

Tests have been done for both non-blocking communication and one-sided com-
munication with several benchmarks, all of which were run on the DGr id-cluster at
HLRS. This machine consists of dual-processor Intel Woodcrest, using Infiniband-
DDR network with the OpenFabrics stack.

4.1 Non-blocking communication performance

For IMB, two nodes were used to test in following cases: compilation with&without
--enable-memchecker and with --enable-memchecker but disabled
MPI-object checking (see Fig. 3) and with&without Valgrind was run (see
Fig. 4). We include the performance results on two nodes using the PingPong test. In
Fig. 3 the measured latencies (left) and bandwidth (right) using Infiniband (not run-
ning with Valgrind) shows the costs incurred by the additional instrumentation,
ranging from 18 to 25% when the MPI-object checking is enabled as well, and 3-
6% when memchecker is enabled, but no MPI-object checking is performed. As one
may note, while latency is sensitive to the instrumentation added, for larger packet-
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sizes, it is hardly noticeable anymore (less than 1% overhead). Figure 4 shows the
cost when additionally running with Valgrind, again without further instrumen-
tation compared with our additional instrumentation applied, here using TCP con-
nections employing the IPoverIB-interface.

The large slowdown of the MPI-object checking is due to the tests of every argu-
ment and its components, i. e. the internal data structures of an MPT_ Comm consist
of checking the definedness of 58 components, checking an MPI_Request in-
volves 24 components, while checking MPT_Datatype depends on the number of
the base types.
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Fig. 3 Latencies and bandwidth with&without memchecker-instrumentation over IB, running
without valgrind
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Fig. 4 Latencies and bandwidth with&without memchecker-instrumentation using IPoverIB, run-
ning with valgrind

The BT-Benchmark has several classes, which have different complexity, and
data size. The algorithm of BT-Benchmark solves three sets of uncoupled systems
of equations, first in the x, then in the y, and finally in the z direction. The tests are
done with sizes Class A and Class B. Figure 5 shows the time in seconds for the BT
Benchmark. The Class A (size of 64x64x64) and Class B (size of 102x102x102)
test was run with the standard parameters (200 iterations, time-step dt of 0.0008).
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Again, we tested Open MPI in the following three cases: Open MPI without
memchecker component, running under Valgrind with the memchecker compo-
nent disabled and finally with - -enable-memchecker.
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Fig. 5 Time of the NPB/BT benchmark for different classes running without (left) and with (right)
valgrind

As may be seen and is expected this benchmark does not show any performance
implications whether the instrumentation is added or not. Of course due to the large
memory requirements, the execution shows the expected slow-down when running
under Valgrind, as every memory access is being checked.

4.2 One-sided communication performance

For one-sided communication, we used NetPIPE and Intel MPI Benchmark both on
two nodes of DGrid-cluster at HLRS, and MPI-object checking is disabled for all
tests in this case, as it will result the same large slowdown as we explained in section
4.1.

In IMB benchmark bi-directional put and get are used, both in aggregate mode,
i.e. both tests will run with varying transfer sizes in bytes which is issued by the cor-
responding one sided communication call, and timings will be averaged over mul-
tiple samples. The bi-directional benchmarks are exact equivalents of the message
passing PingPing. All tests were run in following cases, with/without memchecker
implementation, and run with/without Valgrind.

Figure 6 presents the average time of running bi-directional get and put tests
with and without the memchecker implementation running without Valgrind.
The performance of MPI_Get (see left side of Fig. 6) in these cases is nearly iden-
tical, and the one with memchecker implementation is losing only 1% of run time.
For MPT_ Put (see right side of Fig. 6), we got similar result as MPI_Get. How-
ever, notably, MPT_ Put has a better performance than MPI_Get in general. There
are several factors affecting the performance of MPI_ Put transfer, for example the
choice of window location and the shape and location of the origin and target buffer.
Transfers to a target window in memory allocated by MPT_ALLOC_MEM may be
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much faster on shared memory systems; transfers from contiguous buffers will be
faster on most systems; the alignment of the communication buffers may also impact
performance, see [5] p. 114.
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Fig. 6 Time for bi-directional get(left) and put(right), running without valgrind

On the other hand, the performance is dropping down a lot when running with
Valgrind, as shown in Fig. 7, the results of the same test but running with
Valgrind. In this case, the additional cost of the memchecker instrumentation
(less than 1% of run time) is almost negligible.
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Fig. 7 Time for bi-directional get(left) and put(right), running with valgrind

NetPIPE is a protocol independent performance tool that presents the network
performance under a variety of conditions. It performs PingPong tests between two
processes with increasing message size through different protocols and MPI imple-
mentations. The message sizes are chosen at regular intervals with slight perturba-
tions. Each data point involves many ping-pong tests to get a accurate timing value.
Here it was modified for testing the performance of Open MPI. Namely the variables
of window and address pointers were adapted, all of which are not performance rel-
evant.

The performance of MPI_Get and MPI_Put is shown in Fig. 8 and Fig. 9
separately, running without Valgrind, each of the figures presents the run time
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and bandwidth of executing the application. As seen from the figures, the application
got 3%-5% performance loss, when memchecker is enabled.
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Fig. 8 Time and bandwidth, one-sided get, running without valgrind
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5 Detectable error classes and findings in actual applications

The kind of errors, detectable with a memory debugging tool such as Valgrind
in conjunction with instrumentation of the MPI-implementation are:

*  Wrong input parameters, e. g. wrongly sized send buffers:

char * send_buffer;

send_buffer = malloc (5);

memset (send_buffer, 0, 5);

MPI_Send(send_buffer, 10, MPI_CHAR, 1, 0, \
MPI_COMM_WORLD) ;
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Uninitialized input buffers:

char * buffer;

buffer = malloc (10);

MPI_Send (buffer, 10, MPI_INT, 1, 0, \
MPI_COMM_WORLD) ;

e Usage of the uninitialized MPT_ ERROR-field of MP I_Status?:

MPI_Wait (&request, &status);
if (status.MPI_ERROR != MPI_SUCCESS)
return ERROR;

e Writing into the buffer of active non-blocking Send or Recv-operation or persis-

tent communication:

int buf = 0;

MPI_Request reqg;

MPI_Status status;

MPI_TIrecv(&buf, 1, MPI_INT, 1, 0, \
MPI_COMM_WORLD, &req);

/+* Will produce a warning =/

buf = 4711;

MPI_Wait (&req, &status);

¢ Read from the buffer of active non-blocking Send-operation in strict-mode:

int inner_value = 0, shadow = 0;

MPI_Request req;

MPI_Status status;

MPI_TIsend(&shadow, 1, MPI_INT, 1, 0, \
MPI_COMM_WORLD, &req) ;

/+* Will produce a warning =/

inner_value += shadow;

MPI_Wait (&req, &status);

¢ Read from the buffer of active accumulate operation:

MPI_Win_create(NULL, 0, 1, MPI_INFO_NULL, \
MPI_COMM_WORLD, &win) ;

MPI _Win fence (0, win);

MPI_Accumulate (A, NROWS«NCOLS, MPI_INT, 1,
xpose, MPI_SUM, win);

2 The MPI-1 standard declares the MPT_ERROR-field to be undefined for single-completion calls

such as MPT_Wait or MPI_Test (p. 22).
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/* Will produce a warning =x/
printf ("\n%d\n",A[0][0]);
MPI_Win_ fence (0, win);

*  Write to the buffer of active get operation:

MPI_Win_create(NULL, 0, 1, MPI_INFO_NULL, \
MPI_COMM_WORLD, &win) ;

MPI_Win_fence (0, win);

MPI_Get (A, NROWS*NCOLS, MPI_INT, 1, 0, 1, \
xpose, win) ;

/* Will produce a warning =/

A[1][0] = 4711;

MPI_Win_ fence (0, win);

* Uninitialized values, e. g. MPI-objects from within Open MPIL

During the course of development, several software packages have been tested
with the memchecker functionality. Among them problems showed up in Open MPI
itself (failed in initialization of fields of the status copied to user-space), an MPI
testsuite [2], where tests for the MPI_ERROR triggered an error. In order to re-
duce the number of false positives Infiniband-networks, the ibverbs-library of
the OFED-stack [7] was extended with instrumentation for buffer passed back from
kernel-space.

6 Conclusion and future work

We have presented an implementation of memory debugging features into Open
MPI, using the instrumentation of the Valgr ind-suite, and the performance impli-
cation of using the instrumentation with several benchmarks. This allows detection
of hard-to-find bugs in MPI-parallel applications, libraries and Open MPI itself [1].
This is new work, up to now, no other debugger is able to find these kind of errors.

The future work will be mainly focused on capturing and restoring the memory
states in Open MP], i.e. capturing and restoring the AV-bit pairs from Valgrind.
This is necessary for setting the accessibility of the user buffer more precisely and
for preventing overwriting the states of the memory location. For instance, a snap-
shot of the user buffer states is captured and stored when non-blocking operation
starts, then the buffer set to be not accessible, which will allow Valgrind to detect
the memory access. When send operation is finished, the snapshot will be restored
back to the corresponding memory location, so that the states of the user buffer
remains unchanged.

With regard to related work, debuggers such as Umpire [9], Marmot [3] or the
Intel Trace Analyzer and Collector [1], actually any other debugger based on the
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Profiling Interface of MPI, may detect bugs regarding non-standard access to buffers
used in active, non-blocking communication without hiding false positives of the
MPI-library itself.
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MPI Correctness Checking with Marmot

Bettina Krammer, Tobias Hilbrich, Valentin Himmler, Blasius Czink, Kiril Dichev,
and Matthias S. Miiller

Abstract Parallel programming is a complex, and since the multi-core era has
dawned, also a more and more common task that can be alleviated considerably
by tools supporting the application development and porting process. The Message
Passing Interface (MPI) is widely used to write parallel programs using message
passing, but it does not guarantee portability between different MPI implementa-
tions. When an application runs without any problems on one platform but crashes
or gives wrong results on another platform, developers tend to blame the compil-
er/architecture/MPI implementation. In many cases the problem is a subtle program-
ming error in the application undetected on the platforms used previously. Finding
this bug can be a very strenuous and difficult task. In this paper we present the Mar-
mot tool, an automated correctness checker for MPI applications during runtime.
Examples of violations of the MPI standard are the introduction of irreproducibil-
ity, deadlocks, incorrect management of resources such as communicators, groups,
datatypes etc. or the use of non-portable constructs. To cover different aspects of
correctness debugging in a user-friendly environment, also in hybrid applications
using both MPI and OpenMP, we also work on coupling Marmot with a parallel
debugger (DDT) or a threading tool (Intel® Thread Checker). Some examples of
experiences with real-world applications are given.
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1 Introduction

The Message Passing Interface (MPI) has been a commonly used standard [1, 2] for
writing parallel programs for more than a decade, at least within the High Perfor-
mance Computing (HPC) community. With the arrival of multi-core processors, par-
allel programming paradigms such as MPI or OpenMP will become more popular
among a wider public in many application domains as software needs to be adapted
and parallelised to exploit fully the processor’s performance. However, tracking
down a bug in a distributed program can turn into a very painful task, especially
if one has to deal with a huge and hardly comprehensible piece of legacy code. The
main difficulties are:

1. Developers do not only have to face all the problems that occur in serial pro-
gramming. In addition, parallel applications get more and more complex and
especially with the introduction of optimisations like the use of non-blocking
communication also more error prone.

2. MPI programs do not always behave deterministically. Deadlocks or race condi-
tions may appear, depending on the platform environment or on the MPI imple-
mentation. What is worse, they may only appear sometimes or only when running
on a very high number of processes. Thus, it may take users or developers quite
a long time until they even realise that the program gives wrong results, but only
sometimes. Unfortunately, it may be impossible to reproduce these errors, and
the errors may never occur in the presence of a debugging tool as any sort of
surveillance slightly changes the program behaviour (so-called Heisenbugs).

3. The MPI standard leaves many decisions to the implementation, e.g. whether or
not a standard communication is blocking or how to implement so-called opaque
objects. This implementation-defined behaviour may cause problems when port-
ing an application from one platform to another.

In the following sections, we first give a short overview on related work (Sect. 2)
and describe the design of Marmot as well as possible checks for MPI and hybrid
programs (Sect. 3) and collaboration with other tools (Sect. 4). Finally, we present
some experiences with real-world applications (Sect. 5) and give a very short user-
guide (Sect. 6) and some concluding remarks and an outlook to work planned in
future (Sect. 7).

2 Related Work

Finding bugs in a complex parallel application is quite a painful task. Fortunately
there are powerful tools for the different aspects of debugging, e.g. tools for memory
checking or for correctness checking. Apart from the classical way of debugging —
printf statements — the different solutions are roughly grouped into four differ-
ent approaches: classical debuggers, special MPI libraries and other tools that may
perform a runtime or post-mortem analysis.



MPI Correctness Checking with Marmot 63

1. The freely available debugger gdb [19], which is also used with its graphical
front-end ddd [20], has currently no support for MPI, but it can be attached to one
or several, possibly already running MPI processes. The same can be done with
special memory-checking debuggers, e.g. Valgrind [22, 23]. More convenient
are parallel debuggers, which are based on serial debuggers such as gdb. They
provide the usual interactive functionality of debuggers, such as single-stepping,
breakpointing, evaluating variables, etc., but additionally allow the user to mon-
itor and act on groups of processes in a single debugging session. Examples are
the well-known commercial debuggers Totalview [17] or DDT [16]. These de-
buggers can also be used for a post-mortem analysis of core files.

2. The second approach is to provide a special debug version of the MPI library
(e.g. MPIch or NEC-MPI). This version is not only used to catch internal errors
in the MPI library, but also to detect some incorrect usage of MPI by the user,
e.g. a type mismatch of sending and receiving messages or mismatched collective
operations [4, 5, 6].

3. Another possibility is to develop tools dedicated to finding problems within MPI
applications at runtime. At present, four known different message-checking tools
are under more or less active development. MPI-CHECK [8] is currently re-
stricted to Fortran code and performs argument type checking or finds problems
like deadlocks [8]. Similar to Marmot [9, 10], Umpire [3] uses the profiling in-
terface. The newest kid on the block is the MPI correctness checker library that
is integrated in the Intel® Trace Analyzer and Collector [26]. It is based on the
previous Intel® Message Checker (IMC) [25], which was at that time an example
of the fourth approuch.

4. The fourth approach is to perform a post-mortem analysis by collecting all in-
formation on MPI calls in a trace file. After program execution, this trace file is
analysed by a separate tool or compared with the results from previous runs [7].
This approach is also used by many tools with respect to performance analysis,
and indeed, in some cases it can be very enlightening to “abuse” a performance
tool for debugging.

As no tool is an all-in-one device suitable for every purpose, a combination of
different tools will probably aid the developers most. While a memory-checking de-
bugger may be able to diagnose that an application crashes due to an uninitialized
variable, it will definitely not help much in finding incorrect usage of the MPI inter-
face as Marmot does. Therefore, we also aim at collaborating with other tools, see
Sect. 4. Regardless, not every error can be caught by tools.

3 Design of Marmot

Marmot [10, 11, 12] is a library that uses the so-called PMPI profiling interface
to intercept MPI calls and analyse them during runtime. It has to be linked to the
application in addition to the underlying MPI implementation, not requiring any
modification of the application’s source code nor of the MPI library. The tool checks
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if the MPI API is used correctly and checks for errors frequently made in MPI
applications, e.g. deadlocks, the correct construction and destruction of resources,
etc. It also issues warnings for non-portable behaviour, e.g. using tags outside the
range guaranteed by the MPI standard.

Application
Additional
Profiling Process
Interface
(Debug
MARMOT Server)
Core Tool
Ii
Native
MPI ‘ ‘ ‘ ‘
Client Side Server Side

Fig. 1 Design of Marmot

Figure 1 illustrates the design of Marmot. Local checks including verification
of arguments such as tags, communicators, ranks, etc. are performed on the client
side. An additional MPI process (referred to as debug server) is added for the tasks
that cannot be handled within the context of a single MPI process, e.g. deadlock
detection. Another task of the debug server is the logging and the control of the ex-
ecution flow. Every client has to register at the debug server, which gives its clients
the permission for execution in a round-robin way. Information is transferred be-
tween the original MPI processes and the debug server using MPI. The disadvan-
tage of this server/client architecture is that it inflicts a bottleneck, thus affecting
the scalability and performance of the tool, especially for communication-intensive
applications [12].

In order to ensure that the debug server process is transparent to the application,
we map MPI_COMM_WORLD to a Marmot communicator that contains only the appli-
cation processes. Since all other communicators are derived from MPI_COMM_WORLD
they will also automatically exclude the debug server process. This mapping is done
at start-up time in the MPI_Init call, where we also map all other predefined MPI
resources, such as groups or datatypes, to our own Marmot resources. When an
application constructs or destructs resources during run-time, e.g. by creating or
freeing a user-defined communicator, the Marmot maps are updated accordingly.
Having its own book-keeping of MPI resources, independently of the actual MPI
implementation, Marmot can thus verify correct handling of resources.

The output of Marmot is available in different formats, e.g. as text log file or
html/xml file, which can be displayed and analysed using a web browser or graphical
interface. An excerpt from Marmot’s HTML output is depicted in Fig. 2.

Marmot is intended to be a portable tool that has been tested on many different
platforms and with many different MPI implementations, for instance Linux Clus-
ters with IA32/IA64/EM64T processors, Cray, Hitachi, IBM Regatta and NEC SX
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[Text: ERRORA: MPI_iracv: At least a part of the spaciafiad buffer is still in usa! Tha buffer is still
peed by a call to MP1_lsend in request-reusei.c line: 56,

=== Delailed infermation ===

[This butter iz spaciefied by:

(Starting address: 140736040231364

{Count: 1

E xlent of used dalalype: 4

[Resulting end address (lirst non used byle): 140736040231388
[other butter s epacisfiad by:

Starting address: 140736040231364

{Count: 1

[ xtent of used dalalype: 4

[FResulting end addrass (first non ussd byla): 140736040231368

request-rausel.c Infos see
line: 80 MP1-Standard

(Argument: request associaled with the call that is already using the bulfer

for of typa MPI_Raq)
pereated at request-reusel.c line: 56
ot yet freed.

(Call: MPI_Iracy
Text: WARNING: MPI_Finalize: Thera are still 1 activa/non-fread Raquests!
LListing of information for all remaining Requests.

ler Resource of lype MPI_Request:
-raated at request-reuset .c line: 70
ot yet freed

request-reusel.c Infos see
line: 78 MPI-Standard

{Call: MPI_Finalize

Fig. 2 Excerpt from Marmot’s HTML output

systems, using different compilers (GNU, Intel, PGl,etc.) and different MPI imple-
mentations (MPIch, Open MPI, LAM/MPI, vendor MPIs, etc.). Functionality and
performance tests are performed with test suites, microbenchmarks and real appli-
cations [11, 12].

Marmot supports the complete MPI-1.2 standard for C and Fortran applications
and is being extended to also cover MPI-2 functionality.

3.1 Possible Checks for MPI Applications

Parallel programming is a complex challenge. It offers enough pitfalls that MPI can
imaginably stand for “Maddening Programming Interface”. Among the Top Ten
common programming errors are:

* Deadlocks: Marmot contains a mechanism to automatically detect deadlocks
and notify the user where and why they have occurred. In general, deadlocks
are caused by the non-occurrence of something else, for example mismatched
send/receive operations or mismatched collective calls. One can distinguish be-
tween real deadlocks, which occur inevitably, and potential deadlocks, which
may occur only under certain circumstances, e.g. depending on data races or on
the implementation, for instance, if a standard send is implemented as a buffered
send or not. In this code snippet process 0 and process 1 exchange messages
between each other.

if (rank == 0) {
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// send to 1 and receive from 1
MPI_Send(...);
MPI_Recv(...);

} else if (rank == 1) {
// send to 0 and receive from 0
MPI_Send(...);
MPI_Recv(...);

}

If the MPI_Send is implemented in buffered mode, for example for small mes-
sage sizes, this code will not deadlock, otherwise it will. Currently Marmot’s
deadlock detection is based on a timeout mechanism and therefore finds all real
deadlocks. Marmot’s debug server surveys the time each process is waiting in an
MPI call. If this time exceeds a certain user-defined limit on all processes at the
same time, the debug process issues a deadlock warning. The user is then able
to trace the last few calls on each node. It is also possible that attaching Marmot
(or any other tool) to an application slightly changes the execution flow in such
a way that a potential deadlock becomes apparent.

Data races: Potential race conditions can be caused by various reasons, e.g. by
the use of a receive call with the wildcard MPI_ANY_SOURCE as source argument
or the wildcard MPT_ANY_TAG as tag argument, by the use of random numbers,
or by the fact that nodes do not behave exactly the same. Some users also rely on
collective calls being synchronising, however, the only synchronising collective
call is the MPI_Barrier. Other collective calls can be synchronising or not,
depending on their implementation. For example, assume that any of the send
calls on the processes 1 and 2 match to any of the receive calls on process 0.

if (rank == 0) {

MPI_Recv(..., MPI_ANY_ SOURCE, MPI_ANY TAG, ...);

MPI_Bcast(....);

MPI_Recv(..., MPI_ANY_ SOURCE, MPI_ANY TAG, ...);
} else if (rank == 1) {

MPI_Send(...);
MPI_Bcast(...);

} else if (rank == 2){
MPI_Bcast(...);
MPI_Send(...);

}

If the MPT Bcast is synchronising process 0 will have to receive the message
from process 1 first. If it is not then the message order will not be deterministic:
either the message from process 1 or from process 2 can be received first. At
present, Marmot indicates the use of wildcards, but it does not construct depen-
dency graphs to view the different possible executions nor does it use methods
like record and replay to identify and track down bugs in parallel programs [7] or
to compare different runs. Why does one need a tool to detect this sort of argu-
ment as a simple grep command on the source code would give the same result?
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Actually, a search command does neither show the execution flow nor will it be
able to detect this argument if the application takes functions from some other
library with hidden MPI calls.

* Mismatches: Mismatches in arguments of one call can be detected locally
and are sometimes even detected by the compiler. Examples are wrong type
or number of arguments. Mismatches are also seen in arguments involving
more than one call, e.g. in send/receive pairs or in collective calls. Special
attention is needed when comparing matched pairs of derived datatypes be-
cause it is legal to send, for example two (MPI_INT, MPI_DOUBLE) and to
receive one (MPI_INT, MPI_DOUBLE, MPI_INT, MPI_DOUBLE), or to send
one (MPI_INT, MPI_DOUBLE) and to receive one (MPI_INT, MPI_DOUBLE,
MPI_INT, MPI_DOUBLE) (a so-called partial receive). MPI implementations
usually abort an application when there is a datatype mismatch, e.g. send an
MPI_INT and receive an MPI_DOUBLE, but no exact diagnosis of the mismatch
is given.

* Resource handling: This is an area in MPI where incorrect usage may result in
fatal errors with almost no obvious link to the real cause. Since they are very dif-
ficult to find, we place special focus into detecting them. Marmot is able to keep
track of the proper construction, usage and destruction of all MPI resources, such
as communicators, groups, datatypes, etc. As these resources are “opaque” ob-
jects and therefore implementation-dependent, Marmot has its own book-keeping
of these resources and, thus, duplicates the management done by the underlying
MPI library. Marmot also checks if requests and other arguments (tags, ranks,
etc.) are used correctly, e.g. if an active requests is reused. The main function-
ality is implemented for the C language binding, whereas the functionality for
the Fortran language binding is obtained through a wrapper to the C interface.
Special attention is paid to the verification of the datatypes because they are one
of the major differences between the C and the Fortran language binding.

¢ Memory and other resource exhaustion: Non-blocking calls such as MPI_-
Isend etc. can complete without issuing a matching test or wait call. However,
the number of available request handles is limited (and implementation defined).
Therefore requests should always be freed, as should allocated communicators,
datatypes, etc. Marmot gives a warning when a request is reused, and also when
there are active or non-freed requests left at the MPT_Finalize. Another issue
is reusing memory that is still in use, for example by reading/writing from/into
a buffer by an unfinished send/receive operation. Marmot does currently not per-
form any checks if a buffer can be reused safely because the transmission of data
has completed. This kind of check is a subtle task that requires some insight into
an MPI implementation: what is really going on when calling e.g. MPT_Issend
or MPI_Trecv, how does that depend on the message size, etc.? In some cases,
Marmot checks if buffers are overwritten by mistake, e.g. for MPI_Gatherv
and similar collective calls, it is verified if on the root process data is overridden
due to an erroneous array of displacements.

e Portability: The MPI standard leaves many decisions to the implementors, for
example how to implement opaque objects and handles to these objects, if to



68 Krammer, Hilbrich, Himmler, Czink, Dichev, Miiller

implement MPI_Send as buffered call or not, if to implement collective calls as
synchronising calls, if to make the implementation thread-safe or not, etc. Some
of these issues can already be detected at compile time when the application is
ported to another environment, some can be found at runtime by Marmot, e.g.
using a tag beyond the guaranteed limit.

Marmot supports the complete MPI-1.2 standard, although not all possible tests
(such as consistency checks) are implemented yet. It can be used with any standard-
conforming MPI implementation and may thus be deployed on any development
platform available to the programmer. Although high-quality MPI implementations
detect some of these errors themselves, there are many cases where they do not
give any warnings. For example, non-portable implementation-specific behaviour
is not indicated by the implementation itself, nor are checks performed that would
decrease the performance too much, such as consistency checks. What is worse,
MPI implementations tolerate quite a few errors without warnings or crashing, by
simply giving wrong results.

3.2 Possible Checks for Hybrid Applications

As HPC systems tend to use steadily increasing amounts of computing cores, it is
necessary to provide strategies to utilize these systems. For some systems it is gain-
ful to use MPI and multi-threading at the same time. So called “hybrid” applications
follow this strategy and usually use one MPI process per computing node and one
thread for each computing core of a node. This also increases the complexity of ap-
plications and introduces new MPI usage errors. In order to support development of
such applications it is possible to use Marmot for hybrid OpenMP/MPI applications.

The existence of threads has consequences as it is possible to call the MPI in
parallel, by using multiple threads. The MPI-2 standard restricts the multi threaded
usage by introducing four different usage levels:

MPI_THREAD SINGLE: only one thread exists

MPI_THREAD_FUNNELED:  multiple threads may exist but only the main thread
(i.e. the thread that initialized MPI) performs MPI
calls

MPI_THREAD_SERIALIZED: multiple threads exist and each thread may perform
MPI calls as long as no other thread is calling MPI

MPI_THREAD MULTIPLE:  multiple threads may call MPI simultaneously

These levels are referred to as “thread levels”. Each MPI application may specify a
required thread level, but an MPI implementation may return a lower level instead.
In addition to the specification of the thread levels there are further restrictions in
the MPI standard. An example of such a restriction is the usage of communicators in
collective calls, namely communicators must not be used simultaneously in multiple
collective calls of one process.
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In order to use Marmot in hybrid applications it is necessary to synchronize it to

avoid unprotected parallel data access within Marmot. This is done by using com-
mands of the used multi threading paradigm. Currently only OpenMP is supported
but implementations for other paradigms are feasible. So in addition to the normal
checks for MPI usage it is necessary to check for the following usage faults:

Conformance to the provided thread level: The thread level provided by the
MPI implementation must not be violated. In order to check this it is necessary
to observe which threads are calling MPI and whether it is possible that multiple
threads call MPI simultaneously on one process. Marmot does this at runtime and
detects violations to the provided thread level if they actually occur in a run. In
addition, an application should require the lowest sufficient thread level. In order
to aid developers in selecting this lowest level Marmot calculates the minimal
required thread level at runtime.

Correct usage of shared memory: Applications that use the highest thread level
may call MPI in parallel. Many MPI calls assume that memory passed to MPI is
owned by it for a certain amount of time. Such memory must not be touched as
long as the memory is owned by MPI. When multiple threads execute MPI calls
in parallel this restriction is easily violated. Such an example is shown below.

#pragma omp parallel
{

MPI_Recv (my_buf, ...)
}

In this example the shared variable “my_buf” is passed to MPI multiple times.
These errors are currently not detected by Marmot. In order to detect all instances
of these problems it is necessary to detect every access to memory owned by MPI.
This might be achieved by an own implementation or by using existing tools like
Valgrind [24]. In order to detect a subset of these errors it is possible to check
whether memory passed to MP1 is already owned by MPI due to a preceding call.
Conformance to special restrictions: The MPI standard documents mention
several special restrictions for multi-threaded usage. Restrictions refer to vari-
ous parts of the interface: examples are initializing and finalizing MPI, usage of
communicators in collective calls, usage of requests and message probing. For
the above mentioned restriction stating that each communicator must not be used
in multiple collective calls simultaneously, we want to present a simple example:

#pragma omp parallel
{

MPI_Barrier (MPI_COMM_WORLD)
}

This code snippet violates the restriction for the communicator MPT_COMM_WORLD.
It is necessary to create special checks for each restriction which is currently
done for all identified MPI-1 restrictions. These checks detect violations if they
actually occur in a run made with Marmot.
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4 Collaboration with other tools

4.1 Marmot and CUBE

By default, Marmot prints its errors, warnings and remarks into a human-readable
text file. Another option is HTML logging which results in an HTML file that can
be viewed with a standard browser. However, both of these output formats result in
a chronological list of events. To provide also an hierarchical view of the messages,
Marmot can make use of the CUBE library included in the KOJAK (Scalasca resp.)
toolset [14, 15]. In this case, the output is written to an XML file which can then be
viewed with KOJAK’s visualizer CUBE. An example of Marmot’s log file in XML
format visualized with CUBE is depicted in Fig. 3. One can see that the CUBE

Metrics Call Tree | Flat Profie
Absokte | w | [apsonse -
+ []0 Messages » [Jocattree B
[ 108 nfes + [0 Unknown Location
- I 0 Warnings =[]0 cg-hioriak-marmat-exercise ¢
E 36 WARNING - The debugserver does nat run on an exclusive node| D 0 MPI_iri
@ine” 190
D 90 WARNING - Two processes share the same node D 0 MPI_Comm_rank
@ine: 192
& WARNING - Blocklength (s 01 O 0 MPI_Comm_size
@ine: 193
] & WARNING - Datatype is optional (€} O 0 MPI_Address
@ine 215
D 72 WARNING - Count is O D 0 MPI_Address
@ine: 216
D 72 WARNING - Datatype is for reduction function (C) i & MPFI_Type_struct
@ine: 230
6 WARNING - Datatype(s) not freed O 0 MPI_Type_struct
@ine: 239
0 MPI_Type_commit
] 324 Hotes O @ine 242
0 MPI_Type_commit
~JJoErors O @ine z):u
5 ERROR - Datatype is Fortran datatype! EIU MPI_Address
@ine: 245
36 ERROR - Speciefied butfer still in wse! l:l 0 MPI_Address
@ine: 247
| 6 WARNING - A Deadlock might have appeared | O 0 MPI_Type_struct
@ine. 253
D 0 MPI_Type_commit
Qine 255
O 0 MP_|ssend
@ine: 273
| [T — 0 My -

Fig. 3 Visualisation with CUBE (display detail)

visualizer presents Marmot’s messages in a hierarchical tree view. Infos, warnings,
notes and errors are not displayed in chronological order but are grouped, so that a
user can easily identify e.g. only errors. This visualizer provides an intuitive way of
browsing through the Marmot messages. An improved version (CUBE3) is about to
be released and will also be supported by Marmot.
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4.2 Marmot and DDT

Until now, Marmot has generally been used as a standalone tool. This is about
to change with the integration into the Distributed Debugging Tool (DDT) from
Allinea [16]. DDT is a source level debugger for C, C++ and Fortran. It sup-
ports practically all implementations of MPI, OpenMP and combinations thereof
(MPI/OpenMP hybrid). DDT provides a convenient graphical user interface that
meets the demands of parallel debugging. To combine the strength of the debugger
with Marmot’s ability of runtime MPI correctness checking, a plugin for DDT is un-
der development [13]. The user will then be able to activate or deactivate Marmot on
a per run basis. Furthermore, DDT’s graphical user interface will be used to provide
for a user friendly configuration of the Marmot plugin, e.g. settings concerning Mar-
mot’s log level (Info, Warning, Error) can then be modified using an intuitive GUI,
instead of modifying the respective environment variables via command line. DDT
will also, on the one hand, take care of starting a run with Marmot with an additional
process for the debug server and, on the other hand, hide this process from the user
to allow for a consistent way of working with the debugger. DDT’s graphical user
interface will also be used to display Marmot’s messages. This is especially useful
as messages with different severity may be displayed in different panes and a user’s
click on such a message will jump to the appropriate line in the source code. One
can also make DDT pause the program in case Marmot detects an error. This way,
the user can step through the program using both the debugger and the correctness
checker at the same time.

4.3 Marmot and Intel® Thread Checker

Some of the additional checks presented in Sect. 3.2 that are used for hybrid appli-
cations will only detect errors if they actually appear in a run made with Marmot.
For some applications this might be a problem as the probability of an error to occur
might be very low. As an simplified example we present the following code snippet:

#pragma omp parallel private(thread)

{
#pragma omp sections
{
#pragma omp section
{ MPI_Barrier (MPI_COMM_WORLD) ; }
#pragma omp section
{ sleep(5);
MPI_Barrier (MPI_COMM_WORLD); }
}
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This example violates the collective communicator restriction of the MPI standard
for some very improbable runs. Thus detecting this error with Marmot is almost
impossible, as usual runs will not contain the error.

In order to improve detection of these errors it is possible to use Marmot in
combination with Intel® Thread Checker [27]. Additional code executed in Marmot
makes the Thread Checker aware of violations to MPI restrictions. This is achieved
by creating artificial data races that only occur if such a restriction is violated. The
output of the Thread Checker contains data race errors if a restriction is violated.

4.4 Marmot and Visual Studio on Windows

The Windows Version of Marmot was tested and works well with MPIch2 and
MSMPI (contained in the Compute Cluster Pack). MSMPI is based on the reference
MPIch2 implementation and differs mainly in job launch and management due to
security considerations made in Windows Compute Cluster Server. Although there
are precompiled versions of Marmot for the two MPI implementations a user might
still be forced to recompile it. Compiling for the specific version of the MPI im-
plementation and runtime used is highly recommended. In order to configure/build
Marmot the cmake tool [21] is needed. On Windows it is imperative to avoid mix-
ing debug and release builds of libraries. Therefore a ‘D’ suffix is added to the
debug builds of the Marmot libraries. Users could manually adjust their existing
Visual Studio projects and link to the Marmot libraries or simply use an example
CMakeLists. txt file from the Marmot repository and adjust that to their needs.

Since it can be quite tedious to lookup errors and warnings in log-files an AddIn
was developed to better integrate Marmot into Visual Studio. The AddIn launches
the application selected as ‘Startup Project’ in Visual Studio and communicates with
the Debug-Server built into Marmot (see Fig. 1). The Marmot output is displayed
similarly to compile warnings and errors in the Output pane of Visual Studio (see
Fig. 4).

5 Experiences with real Applications

Marmot has been used with synthetic test programs but also with a number of real-
world applications and benchmarks.

5.1 Bloodflow Simulation

There are many examples of errors that are tolerated by MPI implementations or
that only occur on specific platforms, or occur under specific circumstances. When
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Fig. 4 Marmot Visual Studio AddIn

analysing the development version of a medical application that uses a 3D Lattice-
Boltzmann method for blood flow calculation, we find different problems in the
code. In many places the developers equate MPI_Comm with int. This is a danger-
ous thing to do because, in MPIch, the opaque object MPI_Comm is actually defined
as an int and therefore the code works without a problem. However, in LAM/MPI,
MPI_Comm is defined as a pointer to a struct and therefore it breaks on any plat-
form where a pointer does not fit into an integer.

When we test this application with different input files representing the geometry
of the artery we find other problems. In the simplest case, a mere tube with an ap-
proximately constant radius, the code runs without any problems. When calculating
the blood flow for an artery stenosis, i.e. using a tube with varying radius, the ap-
plication stalls and Marmot finds a deadlock caused by process 0, which performs
an MPI_Sendrecv whereas all other processes perform an MPI_Bcast. A very
simplified skeleton of the source code shows why:

main {

//compute number of iterations depending on the radius
if (radius < X) num_iter = y; else num_iter = z;

for (i=0; 1 < num _iter; i++)

{
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// compute blood flow and exchange results
// with neighbours using MPI_Sendrecv
computeBloodflow(...);

// communicate results using MPI_Bcast
writeResults(...);

}

Every process calculates its own number of iterations depending on the radius, but
unfortunately, they do not communicate to agree on a maximum number of itera-
tions. As a result, process 0 tries to perform more iterations having a piece of the
artery with a bigger radius than the others, and therefore tries to exchange results
with its neighbour using the MPT_Sendrecv whereas the others already have fin-
ished their iterations and try to communicate with the MPT_Bcast. This shows how
important it is to choose relevant input data sets for an effective runtime checking.
It also shows how difficult it is for developers to keep track of all the MPI commu-
nication when it is hidden in subroutines.

Another input file representing a forked artery reveals yet another programming
error. In this case, every process results in different values for the send/receive
counts in the collective call MPT_Gather. On some platforms the application runs
without a problem, but on some platforms the different values cause a segmentation
violation. Strangely enough, on one platform the application runs without a prob-
lem, but when attaching a performance analysis tool to it, it crashes. It appears to be
the fault of the tool, but in reality there is a bug in the application. Antithetically, it
is possible that bugs never occur in the presence of tools (so-called ).

5.2 SPEC MPI2007 Benchmarks

SPEC MPI2007 [34] is a suite of applications used to evaluate performance of par-
allel computing systems. A discussion on one of the SPEC MPI2007 mailinglists
led to the assumption that there was a bug in one of the benchmarks. The discussion
started as invalid results with a certain MPI implementation appeared. Members of
the mailing list identified the existence of multiple uncompleted MPI_TIrecwv calls
that used the same receive buffer. According to the MPI standard this is erroneous.

We used Marmot to confirm the existence of the problem and to validate the
correctness of possible solutions. A first run with Marmot resulted in a segmentation
fault. At first we assumed that there was an error in Marmot but eventually we found
out that there was a second bug in the application. The second error resulted from a
MPI_Irecv call which is drafted below.

call MPI_IRECV( buf, size, type, &
source, tag, comm, &
request, status, error)



MPI Correctness Checking with Marmot 75

This call contains the superfluous argument szatus. Detecting this usually is a com-
piler task but, due to the usage of Fortran77, this was not possible. When using
Marmot additional arguments are appended to the MPI calls and, due to the super-
fluous parameter, this led to the segmentation fault.

After fixing this error we were able to execute the application with Marmot. The
logfiles confirmed the existence of uncompleted MPI_Irecv calls that use the same
receive buffers. Such a situation arises when executing code like:

MPI_Irecv(buf, ... );
MPI_TIrecv(buf, ... );

Three different solutions were proposed to solve this error. Marmot confirmed
that two of the solutions solved the problem. The third solution corrected the prob-
lem by ensuring that only one of the MPI_IRecv calls is satisfied at a time. With
this solution Marmot still detected that memory owned by MPI is used in another
MPI call. When interpreting the MPI standard strictly this is still a usage error of the
MPI, however, as common MPI implementations will only touch the buffer when
the receive is satisfied this will not cause any actual errors.

5.3 Spin Glass application

Marmot is integrated in the Interactive European Grid infrastructure [31].

The Spin Glass application [32, 33] is a physics application that is used to exam-
ine the effects of temperature changes on the physical characteristics of spin glass
- mainly on magnetization. The Spin Glass application uses MPI communication
with both collectives and point-to-point communication. There was a phase in the
development of the application when the program was hanging. Marmot delivered a
hint for wrong data types being used in the MPI communication. The developer had
a look into the log file to examine the order in which the calls were made. Although
the log did not identify the problem, the list of MPI calls helped him to trace the
error as a race condition. The code was then corrected.

The tests done by project members resulted in some very valuable feedback for
the developers. Improvements need to be done in the deadlock detection mechanism,
as sometimes the high latency and low bandwidth of a cluster of workstations result
in increased pending times for communication.

6 How to install and use Marmot

For the readers who are interested in using Marmot themselves we give a very short
description of how to install and use it. A download version and installation instruc-
tions can be found on Marmot’s website [9]. Once the installation is done the usage
of Marmot is quite easy. Two steps have to be performed: First, compilation of the
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application and linking it against the Marmot libraries. Second, running the program
with an additional process (needed for Marmot’s debug server). For the first step,
an installation of Marmot provides compiler wrappers (marmotcc, marmotcxx and
marmotf77) which do the necessary linking. Suppose the user wants to run SomeApp
with Marmot attached and originally uses 3 processes. Then one would typically is-
sue the commands

marmotcc -o SomeApp SomeApp.c
mpirun -np 4 ./SomeApp

After the run a file named Marmot_SomeApp_[TIMESTAMP].txt can be found in the
working directory. This file contains Marmot’s output. If the user wants to view the
results in a browser the logging format can be switched to HTML by modifying the
environment variable Marmot_LOGFILE_TYPE:

export Marmot_ LOGFILE_TYPE=1

An excerpt of such an HTML file is depicted in Fig. 2. An overview on Marmot’s
environment variables can be found in the userguide or in the log file’s header.

7 Conclusion and Future Work

In this paper we have presented the Marmot MPI correctness checker, which anal-
yses the behaviour of an MPI application during runtime and checks for errors fre-
quently made in the use of the MPI API. The functionality of this tool has been
tested successfully with real world applications.

Future work includes technical improvements, e.g. a better deadlock detection
mechanism or full support for the MPI-2 standard. Another aspect is to improve
the performance and scalabality of the tool, especially for communication-intensive
applications. We also aim at constantly improving user-friendliness, e.g. by adapting
CUBE visualisation better to the needs of Marmot’s correctness checking messages.
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Memory Debugging in Parallel and Distributed
Applications

Chris Gottbrath

Abstract Memory errors, such as memory leaks and bounds violations are often the
source of the kind of bugs that are especially challenging for scientists, computer
scientists and engineers to resolve. This paper describes a new software develop-
ment tool called MemoryScape that provides developers with a highly graphical
and interactive memory debugging tool. MemoryScape can be used to troubleshoot
problems on applications ranging from serial applications for the desktop or server
up to massively multprocess applications running on supercomputers. This paper
provides an introduction to some of the challenges of memory debugging in parallel
architectures, reviews the memory errors detected and provides an overview of the
Heap Interposition Agent (HIA) and parallel debugging technology that makes this
possible.

1 Introduction

Memory bugs, essentially a mistake in the management of heap memory, can oc-
cur in any program that is being written, enhanced, or maintained. A memory bug
can be caused by a number of factors, including failure to check for error con-
ditions; relying on non-standard behavior; memory leaks including failure to free
memory; dangling references such as failure to clear pointers; array bounds viola-
tions; and memory corruption such as writing to memory not owned / over running
array bounds. These can sometimes cause programs to crash or generate incorrect
“random” results, or more frustratingly, they may lurk in the code base for long
periods of time - only to manifest at the worst possible time.

Memory problems are difficult to track down with conventional tools on even
a simple desktop architecture, and are much more vexing when encountered on a
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distributed parallel architecture. This paper will review the challenges of memory
debugging, with special attention paid to the challenges of parallel development and
parallel debugging, and introduce a tool that helps developers identify and resolve
memory bugs in parallel and distributed applications, highlight major features, and
discuss architectural choices so that users can understand benefits and drawbacks of
some of those choices.

2 The Challenges of Memory Debugging in Parallel Development

The fact that memory bugs can be introduced at any time makes memory debugging
a challenging task- especially in codes that are written collaboratively or that are
being maintained over a long period of time, where assumptions about memory
management can either change or not be communicated clearly. They can also lurk
in a code base for long periods of time since they are often not immediately fatal
and can suddenly become an issue when a program is ported to a new architecture,
scaled up to a larger problem size, or when code is adapted and reused from one
program to another.

Memory bugs often manifest themselves in several ways, either as a crash that
always happens, a crash that sometimes happens (instability), or just as incorrect
results. Furthermore, they are difficult to track down with commonly used devel-
opment tools and techniques, such as printf and traditional source code debuggers,
which are not specifically designed to solve memory problems.

Adding parallelism to the mix makes things even harder because parallel pro-
grams are often squeezed between two effects, meaning that these programs have to
be very careful with memory. Parallel programs are also written in situations where
the problem set is “large,” so the program naturally ends up loading a very signif-
icant amount of data and using a lot of memory. However, special purpose HPC
systems often have less memory per node than one might ideally desire, as memory
is expensive.

3 Classifying Memory Errors

Programs typically make use of several different categories of memory that are man-
aged in different ways. These include stack memory, heap memory, shared memory,
thread private memory and static or global memory. However, programmers are re-
quired to pay special attention to memory that is allocated out of the heap memory.
This is because the management of heap memory is done explicitly in the program
rather than implicitly at compile or run time.

There are a number of ways that a program can fail to make proper use of dynam-
ically allocated heap memory. It is useful to develop a simple categorization of these
mistakes for discussion; in this paper, they will be described in terms of the C mal-
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loc() API. However, it is important to note that analogous errors can also be made
with memory that is allocated using the C++ new statement and the FORTRAN 90
allocate statement.

3.1 Malloc Errors

Malloc errors occur when a program passes an invalid value to one of the operations
in the C Heap Manager API. This could potentially happen if the value of a pointer
(the address of a block) was copied into another pointer, and then at a later time, both
pointers were passed to free(). In this case, the second free() is incorrect because the
specified pointer does not correspond to an allocated block. The behavior of the
program after such an operation is undefined.

3.2 Dangling Pointers

A pointer can be said to be dangling when it references memory that has already
been deallocated. Any memory access, either a read or a write, through a dan-
gling pointer can lead to undefined behavior. Programs with dangling pointer bugs
may sometimes appear to function without any obvious errors, even for significant
amounts of time, if the memory that the dangling pointer points to happens not to
be recycled into a new allocation during the time that it is accessed.

3.3 Memory Bounds Violations

Individual memory allocations that are returned by malloc()represent discrete blocks
of memory with defined sizes. Any access to memory immediately before the lowest
address in the block or immediately after the highest address in the block results in
undefined behavior.

3.4 Read-Before-Write Errors

Reading memory before it has been initialized is a common error. Some languages
assign default values to uninitialized global memory, and many compilers can iden-
tify when local variables are read before being initialized. What is more difficult and
generally can only be done at random is detecting when memory accessed through
a pointer is read before being initialized. Dynamic memory is particularly affected,



82 Chris Gottbrath

since this is always accessed through a pointer, and in most cases, the content of
memory obtained from the memory manager is undefined.

4 Detecting Memory Leaks

Leaks occur when a program finishes using a block of memory, discards all refer-
ences to the block, but fails to call free()to release it back to the heap manager for
reuse. The result is that the program is neither able to make use of the memory nor
reallocate it for a new purpose.

The impact of leaks depends on the nature of the application. In some cases the
effects are very minor; in others, where the rate of leakage is high enough or the run-
time of the program is long enough, leaks can significantly change the memory be-
havior and the performance characteristics of the program. For long running appli-
cations or those where memory is limited, even a small leakage rate can have a very
serious cumulative and adverse effect. This somewhat paradoxically makes leaks
all that much more annoying — since they often linger in otherwise well-understood
codes. It can be quite challenging to manage dynamic memory in complex appli-
cations to ensure that allocations are released exactly once so that malloc and leak
errors do not occur.

Leak detection can be done at any point in program execution. As discussed,
leaks occur when the program ceases using a block of memory without calling free.
It is hard to define “ceasing to use” but an advanced memory debugger is able to
execute leak detection by looking to see if the program retains a reference to specific
memory locations.

5 The MemoryScape Debugger

The MemoryScape memory debugger is an easy-to-use tool for developers to get
started using. It has a lightweight architecture that requires no recompilation and
has modest impact on the runtime performance of the program. The interface is
designed around the concept of an inductive user interface, which guides the user
through the task of memory debugging and provides easy-to-understand graphical
displays, powerful analysis tools, and features to support collaboration (making it
easy to report a lurking memory bug to the library vendor, scientific collaborator, or
colleague who wrote the code in question).

MemoryScape is designed to be used with parallel and multiprocess target ap-
plications, providing both detailed information about individual processes, as well
as high level memory usage statistics across all of the processes that make up a
large parallel application. MemoryScape’s specialized features, including support
for launching and automatically attaching to all of the processes of a parallel job,
the ability to memory debug many processes from within one GUI and the ability to
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do script-based debugging to use batch queue environments, make it well-suited for
debugging these parallel and distributed applications.

6 MemoryScape Architecture

MemoryScape accomplishes memory debugging on parallel and distributed appli-
cations through the modified use of a technique called interposition. MemoryScape
provides a library, called the Heap Interposition Agent (HIA), that is inserted be-
tween the user’s application code and the malloc()subsystem. This library defines
functions for each of the memory allocation API functions. It is these functions that
are initially called by the program whenever it allocates, reallocates, or frees a block
of memory.

_ MemoryScape
. obtains backtrace

= —j \ R

- il 3 — —
pte = maitoct [ interceptor } | " lioc
~— [-k recordery, | i
T \ ~returned™ i heap --.
value
program g ey manager
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interceptor and recorder
place information
in agent tables

Fig. 1 MemoryScape Heap Interposition Agent (HIA) Architecture. The HIA sits between the
application and the memory allocation layer in glibc

The interposition technique used by MemoryScape was chosen in part because it
provides for lightweight memory debugging. Low overheads are an important fac-
tor if the performance of a program is not to suffer because of the presence of the
HIA. In most cases, the runtime performance of a program being debugged with the
HIA engaged will be similar to that where the HIA is absent. This is absolutely crit-
ical for high-performance computing applications, where a heavyweight approach
that significantly slowed the target program might very well make the runtime of
programs exceed the patience of developers, administrators and job schedulers.

Interposition differs from simply replacing the malloc() library with a debug mal-
loc in that the interposition library does not actually fulfill any of the operations itself
— it arranges for the program’s malloc() API function calls to be forwarded to the
underlying heap manager that would have been called in the absence of the HIA.
The effect of interposing with the HIA is that the program behaves in the same way
that it would without the HIA- except that the HIA is able to intercept all of the
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memory calls and perform bookkeeping and “sanity checks” before and after the
underlying function is called.

The bookkeeping that the HIA library does builds up and maintains a record of
all of the active allocations on the heap as the program runs. For each allocation in
the heap, it records not just the position and size of the block, but also a full function
call stack representing what the program was doing when the block was allocated.
The “sanity checks” that the HIA performs are the kinds of things that allow the
HIA to detect malloc() errors such as freeing the same block of memory twice or
trying to reallocate a pointer that points to a stack address.

Depending on how it has been configured, the HIA can also detect whether some
bounds errors have occurred. The information that the HIA collects is used by the
MemoryScape memory debugger to provide the user with an accurate picture of the
state of the heap.

6.1 MemoryScape Parallel Architecture

MemoryScape uses a behind-the-scenes, distributed parallel architecture to man-
age runtime interaction with the user’s parallel program. MemoryScape starts light-
weight debugging agent processes (called tvdsvr processes for historical reasons),
which run on the nodes of the cluster where the user’s code is executing. These
tvdsvr processes are each responsible for the low level interactions with the individ-
ual local processes and the HIA module that is loaded into the process that is be-
ing debugged. The tvdsvr processes communicate directly with the MemoryScape
front-end process, using their own optimized protocol, which in most cluster con-
figurations is layered on top of TCP/IP.

7 MemoryScape Features

7.1 Using MemoryScape to Compare Memory Statistics

Many parallel and distributed applications have known or expected behaviors in
terms of memory usage. They may be structured so that all of the nodes should
allocate the same amount of memory, or they may be structured so that memory
usage should depend in some way on the MPI_COMM_WORLD rank of the process.
If such a pattern is expected or if the user wishes to simply examine the set of
processes to look for patterns, MemoryScape features a memory statistics window
that provides overall memory usage statistics in a number of graphical forms (line,
bar and pie charts) for one, all, or an arbitrary subset of the processes that make up
the debugging session. The user may drive the program to a specific breakpoint or
barrier, or simply halt all the processes at an arbitrary point in execution.
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The set of processes that the user wishes to see statistical information about may
be selected, with the type of view that the user wants, by clicking “generate view.”
The generated view represents the state of the program at that point in time. The
user may use the debugger process controls to drive the program to a new point in
execution and then update the view to look for changes. If any processes look out of
line, the user will likely want to look more closely at the detailed status of the heap
memory.

7.2 Using MemoryScape to Look at Heap Status

MemoryScape provides a wide range of heap status reports, the most popular of
which is the heap graphical display. At any point where a process has been stopped,
a user can obtain a graphical view of the heap. This is obtained by selecting the
heap status tab, selecting one or more processes, choosing the graphical view and
clicking “generate view.”
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Fig. 2 MemoryScape Graphical Interface provides an interactive view of the heap. Colors indicate
the status of memory allocations

The resulting display paints a picture of the heap memory in the selected process.
Each current heap memory allocation is represented by a green line extending across
the range of addresses that are part of the allocation. This gives the user a great
way to see the composition of the program’s heap memory at a glance. The view
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is interactive; selecting a block highlights related allocations and presents the user
with detailed information about both the selected block and the full set of related
blocks. The display can be filtered to dim allocations based on properties such as
size or the shared object they were allocated in. The display also supports setting
a baseline to let the user see which allocations and deallocations occur before and
after that baseline.

7.3 Using MemoryScape to Detect Leaks

MemoryScape performs heap memory leak detection by driving the program to a
known state (a breakpoint, for example) or by simply halting the processes of a
running parallel application using the “halt” command in the GUI or the CLI. By
selecting the leak detection tab in the memory debugging window, one or more of
the processes in the parallel job can be selected to generate the leak report.

The resulting report will list all of the heap allocations in the program for which
there are no longer any valid references anywhere in the program’s registers, or
accessible memory. A block of memory that the program is not storing a reference
to anywhere is highly unlikely to subsequently be subject to a free() call and is
extremely likely to be a leak. Leaks can also be observed in the heap graphical
display discussed above by toggling the checkbox labeled “Detect Leaks” in which
leaked blocks will be displayed in red on the graphical display.

7.4 Using MemoryScape to Detect Heap Bounds Violations

One of the classes of memory errors mentioned above that is often difficult to diag-
nose is when an error in the program logic causes the program to write beyond the
bounds of a block of memory allocated on the heap. The malloc API makes no guar-
antee about the relative spacing or alignment of memory blocks returned in separate
memory allocations — or about what the memory before or after any given block
may be used for. The result of reads and writes before the beginning of a block of
memory, or after the end of the block of memory, is undefined.

In practice, blocks are often contiguous with other blocks of program data. There-
fore, if the program writes past the end of an array, it is usually overwriting the con-
tents of some other unrelated allocation. If the program is re-run and the same error
occurs, the ordering of allocations may differ and the overwriting may occur in a
different array. This leads to extremely frustrating “racy” bugs that manifest differ-
ently, sometimes causing the program to crash, sometimes resulting in bad data, and
sometimes altering memory in a way that turns out to be completely harmless.

MemoryScape provides a mechanism that involves setting aside a bit of memory
before and after heap memory blocks as they are allocated. Since this bit of memory,
called a guard block, is not part of the allocation, the program should never read or
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write to that location. The HIA can arrange for the guard blocks to be initialized
with a pattern and check the guard blocks (any time the user asks for a check and
again any time an individual block is deallocated) for a change in this pattern. Any
changes mean that the program wrote past the bounds of the array.

7.5 Collaboration Features in MemoryScape

MemoryScape provides users with two forms of memory reporting that help dis-
tributed development teams collaborate effectively to troubleshoot problems and
improve product quality. Heap memory views can be exported as an HTML file that
can be read by a web browser. These HTML files include Javascript applets that pro-
vide the user with the ability to interact with the report in their browser in a similar
way to the way that the report can be interacted with on screen — allowing the reader
to drill down into sections of the report that are interesting and survey the rest of the
report at a summary level.

MemoryScape also supports the creation of a memory debugging data file. This
is a binary representation of all of the data that MemoryScape has about a process.
These files can be loaded back in at a later date and interacted with just like live
processes. This gives developers the ability to store representations of processes for
later comparison and examination.

Memory debugging data files can also be loaded by the memory module of the
TotalView™ Source Code Debugger. This allows sophisticated users to apply even
more powerful and precise debugging techniques that take advantage of the idea
of having memory debugging and access to all the variables and state data for live
processes.

8 MemoryScape Usage Tips

As discussed, MemoryScape detects many instances where a program has er-
roneously written outside the bounds of heap arrays. Developers and scientists
can compliment MemoryScape’s heap bounds checking with compiler-generated
bounds checking code for arrays that are allocated automatically on the heap or
in global program memory. A number of compilers, including the Inte]™ Fortran
Compiler and the open source gfortran compiler, can generate bounds checking code
automatically with a compile line option, for example (-check-bounds for ifort and
-fbounds-check for gfortran).

For developers with more advanced memory debugging needs, the TotalView
Debugger provides a way of debugging memory problems that allows the user to
examine memory information within the source code context of the program. When
doing memory debugging using the TotalView source code debugger, the user can
examine data structures that might contain pointers into the heap memory within the
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program. When memory debugging is enabled, these pointers are annotated with
information about the status of the memory block being pointed to.

One advanced technique available to users who are using the Total View source
code debugger in conjunction with the memory debugger involves the use of watch-
points. Watchpoints are a debugger feature that allows the process to be stopped at
the moment when a given block of memory is written to. When a pointer is writ-
ing “wildly” across memory (into space that is completely unrelated to where the
pointer is supposed to be writing), it can be very hard to pin down.

Guard blocks can be used together with watchpoints to track down this excep-
tionally subtle type of error. The troubleshooting takes two passes. On the first pass
through the program, guard blocks are used to identify a specific block of mem-
ory that is erroneously written to. Then, on the second pass through the program, a
watchpoint is set at that precise address. The watchpoint should trigger twice: once
when the block of memory is painted by the memory debugger and the second time
when the block of memory is overwritten by the wild pointer.

While most users will want to use MemoryScape interactively as outlined above,
ongoing development introduces the possibility that new memory bugs may be in-
troduced at any point. Development teams are encouraged to add heap memory tests
to their ongoing testing strategy. MemoryScape includes a non-interactive command
line version that is specifically designed to be incorporated into an automatic testing
framework. Development teams that use MemoryScape in this way can detect, ana-
lyze and remove new memory errors as soon as they are introduced in development
— before they have any impact in production.

9 MemoryScape User Case Study: SIMULIA Uses
MemoryScape to Find and Fix Bugs Quickly

DASSAULT SYSTEMES is a worldwide PLM leader and software innovator. The
company’s SIMULIA software solutions empower users to create, share and experi-
ence in 3D. SIMULIA’s scalable portfolio of realistic simulation solutions improves
product performance, reduces physical prototypes and drives innovation, including
the CATIA Analysis applications, the Abaqus product suite for Unified Finite Ele-
ment Analysis, multiphysics solutions for insight into challenging engineering prob-
lems, and lifecycle management solutions for managing simulation data, processes
and intellectual property.

Tremendous attention and resources are dedicated to ensuring the high quality of
SIMULIA products. Nevertheless, with each release a few “mysterious” problems
may creep in. They occur very rarely (once in about every 100 or even 1000 runs),
but when they do occur, they defy all human efforts to capture them. These few
problems could also potentially draw tremendous resources.

Historically, the task of finding and fixing such memory bugs has been a time-
consuming and complex task; finding and then understanding these bugs would take
a considerable amount of effort and was very expensive because it involved a great



Memory Debugging in Parallel and Distributed Applications 89

deal of human time and attention. The problems would occur in fully optimized
builds when run on loaded machines, where there is strong contention for memory
between processes, and would also usually occur in very long running jobs that often
take days. Additionally, in many cases there would be no core-dump. Even in the
cases where there was a core-dump, it would point to the result of the corruption,
not the source of it. The source may often be quite a distance away from the point
of the crash.

In most cases, it was found that these mysterious and elusive problems were be-
ing caused by subtle memory problems that would flee at the moment’s notice. After
many frustrating attempts to diagnose these issues using logic and reasoning, it be-
came clear that SIMULIA developers needed a better way to gain insight into what
was happening with memory. Thus the search for a proper tool began. SIMULIA
was looking for something that would allow them to intercept such problems from
the start, to capture their cause, and to fix them at their origin. They ultimately chose
to employ the MemoryScape memory debugger from Total View Technologies.

Since the company began using the MemoryScape, developers have been able to
find memory problems easily and fix them very quickly - with little effort. “Mem-
oryScape accelerates our ability to identify where and why problems occur in our
software,” said Nick Monyatovsky, software engineer at SIMULIA. “When a prob-
lem occurs, MemoryScape’s GUI provides a very clear view of the source of the
problem, and its scripting interface, and the tool allows us to automate the bug de-
tection process. Now, we run MemoryScape continuously, around the clock. It has
been very effective in uncovering the hidden latent errors in our code. It finds prob-
lems that defy the regular testing methods, and it allows us to fix them proactively.”

On the initial scan, MemoryScape found about 12 problems - and in every in-
stance, it was a memory bug. MemoryScape has provided SIMULIA developers
with a very effective, inexpensive way to find memory problems without spending a
lot of time on the process. The data provided by MemoryScape’s reporting mecha-
nism provides details for developers to immediately see where a problem lies. When
MemoryScape triggers an error, it saves a memory snapshot. This snapshot later
gives a developer a very good picture of the place of the error, the memory contents,
and the context of execution at that time.

The features of MemoryScape that SIMULIA developers have found to be the
most valuable in their development process is the fact that the tool is scriptable and
therefore can be run automatically. When the debugger finds a problem, it gives
developers the information to see it right away and the fix is easy after that. This has
led to tremendous cost and time savings at SIMULIA.

SIMULIA developers have also found MemoryScape to be faster in comparison
to other checkers on the market that are much more troublesome to work with, are
much slower, and require expensive instrumentation. “MemoryScape is fast enough
that we use it to cover a lot of ground and the tool has provided us with a very
efficient way of improving our QA substantially,” Monyatovsky added.

Developers also like the feature of visualizing and analyzing memory leaks, and
classifying them by source file. This information is invaluable, and is very hard
to obtain by using anything else. Another major strength of MemoryScape is its
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ability to execute and understand parallel MPI jobs, a key area of SIMULIA’s focus
right now. Having tools that operate in this environment is very important for the
company’s developers.

10 Future MemoryScape Product Plans

Areas for future development of MemoryScape include improved integration of the
product into the TotalView Workbench Manager application. The Workbench pro-
vides a site for sharing configuration and session data between the different develop-
ment tools that a developer may need. The Workbench provides an extensible base
from which users can access recent debugging, memory debugging and performance
analysis sessions.

Because integrated development environments (IDEs) are popular, but not uni-
versally embraced, the Workbench can be used from within an IDE but does not
require the user to be using an IDE. Future versions of the MemoryScape product
will more than likely share state and information about programs, input values and
parameters, memory data files, etc. with the Workbench.

Other areas of future MemoryScape development include improved support for
analyzing the historical usage of memory within the application so that developers
can generate an accurate understanding of the memory usage behavior of the pro-
gram. Perhaps the most frequently requested area of enhancement is in regards to
providing developers with additional options for detecting and reporting memory
reads and writes beyond the extent of heap allocations. TotalView Technologies is
actively investigating possible enhancements that might allow developers to trade
off runtime performance for more detailed information in this area.

11 Conclusion

Memory bugs can occur in any program that is being written, enhanced or main-
tained. These types of bugs are often a source of great frustration for developers
because they can be introduced at any time and are caused by a number of differ-
ent factors. They can also lurk in a code base for long periods of time and tend to
manifest in several ways.

This makes memory debugging a challenging task, especially in parallel and dis-
tributed programs that include a significant amount of data and use a lot of memory.
Commonly used development tools and techniques are not specifically designed to
solve memory problems and can make the process of finding and fixing memory
bugs an even more complex process.

MemoryScape is an easy-to-use memory debugging tool that helps developers
identify and resolve memory bugs. MemoryScape’s specialized features including
the ability to compare memory statistics, look at heap status and detect memory
leaks make it uniquely well-suited for debugging these parallel and distributed ap-
plications.
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Sequential Performance Analysis with Callgrind
and KCachegrind

Josef Weidendorfer

Abstract This chapter presents the suite of tools Callgrind and KCachegrind. The
first is an execution driven cache simulator, which outputs profile information on
cache events, as well as the dynamic call graph of the execution, attributed with call
counts and inclusive costs. KCachegrind is a visualization tool tailored at browsing
the results gathered by Callgrind. After some introduction to sequential performance
analysis and related tools, the tool suite is presented, followed by typical use cases.
Finally, future developments are discussed.

1 Introduction

This chapter present the suite of tools Callgrind and KCachegrind [10], which
mainly is used for sequential performance analysis. Development tools for pro-
gram parallelization are the main objective of the “Parallel Tools Workshop”. How-
ever, parallel code is composed of sequential code parts. Thus, the performance
of frequently executed sequential code plays a significant role. One can classify
performance bottlenecks of a parallel program into issues which also appear with
sequential code, and issues only happening with parallel code, such as communi-
cation/synchronization overhead, or wasted time because of load imbalance. Both
can influence each other. E.g., optimization of sequential code can change the load
balance of parallel code. Sequential optimization can even require a more complex
parallelization strategy. Further, when the partitioning of data in a parallel program
leads to data partitions fitting into cache, this influences the sequential performance.
Therefore, sequential and parallel performance optimizations are not independent
from each other. As a rule of thumb, one should first go for the best sequential
performance, e.g. by running the MPI program with one task only, and afterwards
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switch to parallel performance issues. In the following, when talking about perfor-
mance analysis and optimization, only sequential performance is of concern.

First, a short overview of sequential performance analysis is given, presenting
tools for sequential performance analysis. Then, the measurement tool Callgrind is
presented, how it compares to the other tools, and its cache model and different
features. After an overview of the visualization tool KCachegrind, typical usage
scenarios are provided. The chapter concludes with features to be introduced in the
future.

1.1 Short Overview to Sequential Performance Analysis

According to D. Knuth, “premature optimization is the root of all evil” [5]. Micro-
optimization in the implementation phase is not only bad for code readability but it
is also a waste of time for the developer. Optimization generally should be done after
the implementation phase on bug-free code. It is important to concentrate on opti-
mization of code parts where local performance improvements map to allover im-
provement. To find these code parts, performance analysis tools are used. While the
localization of code to optimize is the main usage of such tools, it also is important
to show what is going wrong, and to give hints about ways leading to performance
improvements. Further usage scenarios for analysis tools are:

e Checking the correctness of assumptions on runtime behavior. E.g. when the
tool outputs the exact number of times a function was called, and this differs
much from the expectations of the programmer, there probably is a logical error
somewhere. This is especially important when using library functions, and the
time complexity of the library function differs from expectations.

e With the tool being able to measure single functions, one can directly decide
about the best implementation from multiple alternative algorithms for a prob-
lem.

e Another use of analysis tools is to get knowledge about any unknown code. As
the tool pinpoints the timely dominant code parts, one can assume that these are
also the important parts of the code. By providing the call graph to these code
positions, the ordering of how to get familiar with foreign code is given.

Reason of Bottlenecks in Sequential Code

After the tool pinpoints the code portions where most time is spent, and thus, where
any performance optimization would show best allover improvement, the actual op-
timization depends on the type of bottleneck. The reason of bottlenecks in sequential
code can be categorized as follows:

* Logical errors that do not influence the correctness of the program but have neg-
ative impact on performance. This includes redundant calls to functions with
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idempotent results such as multiple initialization, or function calls done always
but needed only sometimes depending on input. If the tools shows that time-
dominant functions are called excessively often, or loop counts inside of the
function are unexpected high, a logical error could exist here. To become aware
of such an issue, the tool needs to collect call and jump/loop counts.

* Wrong algorithm for a problem with unneeded high runtime complexity. The
solution is to test different algorithms.

e Bad runtime behavior dependent on system architecture characteristics, resulting
in slow code execution. Reasons for execution stalls are (1) memory accesses
missing the cache, thus waiting for data from slow main memory, (2) unpre-
dictable control flow changes, (3) data dependencies limiting the instruction level
parallelism, (4) further issues depending on microarchitectural limitations. With
modern processors, bad memory access behavior is by far the biggest problem,
as a cache miss can last hundreds of processor cycles. The tool needs to be able
to show the exploitation of processor resources. This usually needs hardware to
support the collection of according event types, and the tool being able to access
this hardware support.

In the scope of high performance computing, it is worth to avoid bottlenecks in
every category, as even minimal relative runtime improvement can map to signifi-
cant absolute improvement, taking into account the typical long runtimes. While the
first two types of reasons for bottlenecks are usually taken care of after the imple-
mentation phase of a program, the last category needs further analysis every time the
hardware changes. Especially for architecture aware optimizations, it is important to
understand why a given code property results in stalls at some points in the microar-
chitecture in order to be able to find fitting solutions. While it can be expected that
improvements in cache exploitation lead to real performance improvements, this is
less the case for the other reasons for pipeline stalls mentioned above. However,
every optimization step should be checked for real time improvements. A reduction
of some event count measured by the tool is not enough.

Performance Measurement Techniques

A tool for sequential performance measurements typically allows to measure event
types such as clock ticks (ie. time), function calls, percentage of bus utilization,
or cache misses. These events have to be related to the code region where events
happen, or even better, also to the full call path starting from main down to the code
region. This allows the developer to identify the context of event occurrences more
easily, especially when a function is called from different places, or the functions is
inside of a library unaccessible to the programmer. For the latter, any code changes
would have to be done up the call chain.

Storing the occurrence of every single event is often not possible because of
the high amount of data this would produce. As the tool usually runs on the same
hardware as the program to be measured, resource consumption of the tool itself
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should be kept to a minimum to not influence the measurement, thus destroying the
usefulness of the measurement itself.

There are different solutions for minimizing the impact of a performance analysis
tool:

e Online aggregation. Instead of storing a sequential stream of time-stamped events
(a Event Trace), counters are incremented. Multiple counters can be used for
different code positions, resulting in a histogram of event counts. This is called
a flat profile. Summing up the counts for each function gives exclusive costs,
ie. event counts for events happening in this function. By also relating event
occurrences to all the functions up in the call path (call path profiling) gives
inclusive costs for functions, ie. event counts for events not only happening in
a given function, but also in all functions called from there. The advantage of
online aggregation is that the size of the measurement data depends on code size,
and not runtime (as is true for full event traces).

» Statistics instead of exact counts. The distribution of events to code positions
typically does not change much when only every n-th event is checked. This is
called Sampling, and is supported by all processors nowadays with hardware
performance counters. A counter for a specific event type can be configured
to trigger an interrupt calling into the tool, after a given number of events oc-
curred. The advantage is that the overhead of the measurement tool is tunable,
and there does not need to be any instrumentation of the target binary for the tool
to work. Instrumentations are code modifications needed for basic functionality
of a analysis tool. Any such instrumentation is an overhead potentially disturbing
the measurement.

e Architecture simulation. This systematically avoids any influence of the mea-
surement tool on the measurement. However, for practical reasons, the simula-
tion slowdown has to be acceptable. This usually means that the model has to be
quite simple, and only part of the microarchitecture of a processor is covered.

1.2 Related Tools

The best known tool for performance analysis of sequential code probably is
GProf [3]. It uses Sampling based on time intervals (available in every OS) and
compiler instrumentation, to get the exact count of method calls. The latter allows
to heuristically build up the call graph and calculate inclusive costs. However, for
this, the application as well as every shared library used needs to be recompiled
with a special compiler flag for instrumentation for correct results. Unfortunately,
the instrumentation often leads to high measurement overhead, especially when tiny
functions are called often. Additionally, the heuristic for the calculation of inclusive
costs can go wrong.

With the availability of hardware performance counters in processors, the Sam-
pling method is most commonly used today by tools from hardware vendors such as
Intel, Sun, SGI and others. Intel VTune [4], which is available for Intel processors,
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running on Windows or Linux, allows sampling both system-wide and per process.
It also has a mode for collection of the call graph using binary instrumentation.
OProfile [6], available for almost any architecture running Linux, does system-wide
profiling with the need for root access, taking advantage of performance counters.
Sun Performance Analyzer [8]) is similar to VTune, running both on Linux and So-
laris as part of the Sun Studio IDE. Vendor tools usually offer sophisticated binary
instrumentation to get the call graph and exact call counts. However, this can have
the same overhead issues as GProf.

For sure, architecture simulation is an important tool in the design process for
every hardware vendor, but these in-house simulators are not publicly available. Be-
sides, cycle-accurate simulators probably are not practically useful for performance
optimization because of their huge slowdown. However, there is a system simulator
available from AMD with are very simple CPU model [1]. Further, there were quite
some simulators developed for architecture research such as [2, 9]. They typically
rely on offline memory traces, as they are tailored for parameter studies. Callgrind,
presented in the next section, specializes in ease-of-use for the purpose of perfor-
mance analysis, helping programmers to optimize their code.

2 Callgrind: a Call-Graph building Online Cache Simulator

Callgrind is a performance analysis tool based on architecture simulation. The sim-
ulation is execution driven and is done together with event aggregation on the fly,
ie. simultaneously to the execution of the target code. Calling into simulation needs
instrumentation, which is done at runtime, thus allowing the tool to work on unmod-
ified compiled code.

The dynamic runtime instrumentation is provided by the open-source package
Valgrind! [7]. Valgrind includes a set of tools for correctness checking and perfor-
mance profiling, such as an memory correctness checker (Memcheck), a race detec-
tor (Helgrind), a memory profiler (Massif), and performance analysis tools based on
cache simulation (Cachegrind, Callgrind). With its runtime instrumentation infras-
tructure, Valgrind Tools can observe user-level processes compiled for Linux or AIX
on x86, x86-64, PPC32, or PPC64. Valgrind, as well as Callgrind, is open-source
covered by the GPL.

Callgrind is more or less an extension of Cachegrind, optionally using its cache
simulation model, but adding the ability to track any calls happening in a program
run. While Cachegrind provides a flat profile of the number of cache events happen-
ing in functions (ie. exclusive costs) in its output, Callgrind also provides inclusive
costs with the help of call tracking. In contrast to GProf, which heuristically calcu-
lates the inclusive cost from call counts, Callgrind directly collects it by storing the
value of a global event counter at function enter, and subtracting it from the counter
value at function exit.

! Valgrind homepage: http: / /www.valgrind.org


http://www.valgrind.org

98 Josef Weidendorfer

Together with a graphical visualization of the call graph, this allows to see the
cost distribution starting from main (), and going down the call chain to the func-
tion where most cost is spent. When these costs are spent deep down in some 3rd-
party library, it is easy to recognize the own code which is responsible for calling the
library, and this exactly is the position where changes are required for improvement.

2.1 Cache Model and Events

The cache simulator models a synchronous, two-level, inclusive cache with separate
L1 instruction and data caches, and an unified L2 cache. Synchronous means that
the simulator always handles cache accesses at once, and there can not be multiple
access requests simultaneously in completion. An inclusive cache hierarchy always
fully contains the cache lines of smaller levels in higher, larger cache levels. Writes
always are passed from the L1 (ie. L1 is write-through) to the L2 cache, so that
afterwards, the written-to cache line occupies space both in the L1 data cache and the
L2 unified cache. Both caches work with user-level addresses (ie. virtual addresses);
there is not simulation of a translation lookaside buffer (TLB). At every memory
access, the simulator first checks the level-1 cache (depending on the access either
the L1 instruction or L1 data cache) for the cache-line holding the accessed address,
and on a miss, it also checks the level-2 unified cache. Whenever there was a miss
in L1 or L2, space for the according cache line is reserved, possibly evicting another
line. The replacement strategy used is LRU.

This cache model resembles a simplification of the cache hierarchy used e.g. in
Intel Pentium-3/4/M single-core processors”. Callgrind (and Cachegrind) by default
check the real processor> for L1/L2 cache sizes, cache line length, and associativity.
The idea is that the user probably wants the simulation to be similar to the real-
ity on the processor of the machine the simulation runs on. However, these cache
parameters can be explicitly given on the command line, too.

Events generated by the cache simulation are L1 hit, L2 hit, or L2 miss. For each
of these three results, the type of access (instruction read, data read, or data write)
is noted, too, so that there are nine different possible event types. In the output,
counters for these events are given per source line, or optionally even per instruction
address. The set of event types does not specify the kind of eviction triggered by a
miss. For a L2 write-back cache, the dirtiness of a cache-line (ie. modified or not)
would have influence on the cost (bus occupation), as a modified line needs to be
written back. However, because the events do not distinguish between different miss
kinds, the cache model thereby does not specify whether the L2 cache is write-back
or write-through: both cache types result in the same event counts.

2 Newer Intel processors using the Core microarchitecture have a write-back L1 cache, leading the
a slightly different behavior. AMD processors always had exclusive caches, where on a miss, data
is always loaded into L1, and lines evicted from L1 are stored into L2 (acting as victim cache),
leading to different content in L1 and L2.

3 via the CPUID instruction
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It is important to note that the cache simulation can not say anything about the
stall time in the processor core because of cache misses. This would need an cycle-
accurate simulation not only for the cache, but also for the CPU microarchitecture,
and probably more important, for the system bus, memory controller, and DRAM
chips. Aside from the fact that hardware documentation for a given processor is
not available in the detail needed, the simulation would not by practically useful
any more because of the simulation slowdown. However, as memory accesses often
slow down application performance in practice, a relative reduction of L2 misses of-
ten maps to faster runtime performance. Quantitatively, one can construct a heuristic
giving worst-case cache latency by measuring the worst-case miss latency of an L1
and L2 miss on a real machine, e.g. with the Calibrator tool*, and use this as cycle
estimation. This worst-case derived® event is provided as “cycle estimation” event
(CEst) within KCachegrind. For adjustment to the cache latencies of a given pro-
cessor, the coefficients in the formula of this derived event can be edited. However,
this worst-case heuristic can be wrong because of other application activity (such as
lots of heavy calculations), partially or even completely hiding the cache latency.

Comparison with Real Processor Caches

The following discrepancies of this simple cache model to any real processor (best
comparison would be e.g. an Intel Pentium-M) can be noted:

e Synchronousness. Any real cache hierarchy can have multiple requests in the fly,
handling them in an asynchronous way. While this would drastically raise the
complexity of the simulator, the event counts get far more difficult to interpret
and understand: E.g. 10 accesses in a row to the same not-loaded cache line lead
to up to 10 L1 misses and only one L2 miss for the asynchronous case, depending
on the timing of the accesses and on the out-of-order capability of the execution
pipeline.

e No simulation of hardware prefetchers. Every cache implementation nowadays
includes automatic prefetching of data by predicting future accesses. Thus, real
accesses potentially find the needed data in the cache, depending on the correct-
ness of the prediction and the pre-loading in time, which also depends on the
bus load. The influence on application performance can be significant. However,
the existence of HW prefetchers is architecture dependent. Optimization based
on the simple cache model will result in faster performance also on processors
without prefetchers.

* No difference in events between write-through/write back L2. Cache hierarchies
in all processors have a write-back behavior on the last level to reduce bus activ-
ity. Thus, writing back dirty evicted cache lines can have a performance impact.
However, this happens on writes, and typically, a write transaction can be done

4 http://monetdb.cwi.nl/Calibrator
5 A derived event is an event not measured directly, but calculated from other events
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completely in the background, not influencing the runtime (in contrast to a mem-
ory load, where the value is needed for further processing).

While these differences to real processor hardware exist, reduction of cache
events of the simple model usually also lead to reductions of events on real hard-
ware. And typically, it also results in reduction of runtime. However, as already
stated in the introduction to this chapter, additional runtime measurements are al-
ways needed to check that there is real runtime improvement.

There are important benefits to a simple cache model aside from the simulation
time:

* The results of the simple cache model are easy to understand and, with help of
event attribution on instruction level, also easy to reconstruct. They usually match
an a-priori analytical analysis of the cache behavior of the code. This allows to
better estimate the improvement of code caches beforehand, and therefore, leads
faster to satisfying optimization results.

e The cache simulation results are reproducible. For comparison of the effective-
ness of a code optimization, it is far better to be able to rely on stable and
reproducible measurement results. Results on real processors can vary heavily
with the same code from execution to execution, depending on history and other
background system activity. This usually leads to the need for averaging runtime
results of time consuming, multiple runs.

e Isis good when optimizations work on any architecture. So-called cache obliv-
ious algorithms exploit caches whatever the capacity is. Optimizations working
in a simpler cache model typically lead to better architecture independence of the
runtime improvement. On the other hand, it can happen that no improvement can
be observed with sufficiently sophisticated hardware.

Extensions to the Cache Model

The basic cache model of Callgrind, as described in the previous section, is the same
as found in Cachegrind. In Callgrind, there are further options to extend this simple
cache model in two ways:

» Explicit specification of write-back behavior for the L2. Each of the three L2 miss
events (for instruction read, data read, data write) are further subdivided into a L2
miss event with dirty and non-dirty state, respectively. For the cycle estimation
derived event using worst-case cache latencies, the formula can be extended to
account the double time for the three additionally added L2 miss events evicting
a dirty, modified line before. The motivation is that there are two bus transactions
instead of one®. While the cache extension seems to be useful, the results usually

6 Unfortunately, the previously mentioned Calibrator tool does not measure L2 misses with dirty
line eviction.
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do not differ much from the basic cache model’. This write-back extension is
switched on with the command line option “—simulate-wb=yes”.

e Addition of a best-case hardware prefetcher. As stated in the introduction, every
processor nowadays has mechanisms which try to predict future memory ac-
cesses and prefetch data which is expected to be accessed in the future by a pro-
gram. In the optimal case, a prefetch is completed when the data is needed, thus
fully hided memory latency. The prefetch simulation predictor detects at most 16
sequential stream accesses (up or down) inside of memory pages of 4 kB when
these are the only accesses in a page. On an memory access which is part of a
detected stream, the cache line which is 4 lines apart from the given access in the
detected direction is loaded into cache without any latency at all. Thus, it is as-
sumed that every prefetch can be fully hidden (ie. best-case). This simple stream
prefetcher scheme should be part of any real hardware prefetcher implemented in
processors nowadays. For example, it is quite similar to the one found in recent
Intel processors for the L2 cache. When to only option to optimize for memory
accesses is the insertion of software prefetch instructions, this cache model ex-
tension can guide where such prefetch instructions are really needed, and where
they are unneeded, as covered by the hardware prefetcher. This is important as
the insertion of software prefetch instructions also can slow down code because
of limited instruction decoding bandwidth. The prefetcher extension is switched
on with the command line option “—simulate-hwpref=yes”.

Metrics Extension: Cache Exploitation

While not strictly part of the cache model, an important property of a simulator
are the event types and metrics which are derived from the simulator state changes.
The default for Callgrind are, as mentioned above, nine cache events, providing the
result of accesses into the cache hierarchy as L1 hit, L2 hit or L2 miss. These are the
events which typically also can be measured with hardware performance counters,
and hint at code positions where there is a potentially stall because of slow memory
accesses. However, an question not answered by these events is, how the cache is
exploited by the application. For any cache optimization, the goal is to improve
the locality of memory accesses. This can be subdivided into remporal locality (the
same memory cell is accessed multiple times) and spatial locality (memory accesses
are to nearside memory cells). Processor caches are beneficial because these two
types of locality generally appears in any program, which is an observation called
Principle of Locality. Holding copies of memory cells exploits temporal locality,
and caching blocks of memory does exploit spatial locality.

To show potential for better cache exploitation, it is important to quantify the
two locality types. The needed information can be captured via the cache simulator

7 There is an interesting exemption: Searching for prime numbers using the algorithm “Sieve of
Eratosthenes” has a lot of unnecessary writes where the latency can not be hidden by processors.
By getting rid of them, real caches show doubled performance. To show this effect, this write-back
simulator extensions has to be switched on.
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state. For temporal locality, it is important to know how many times a given cache
lines was accessed before it was evicted, and for spatial locality, the percentage of
bytes really accessed in a cache lines before being evicted is relevant.

Any visualization of program performance should point at bad behavior. There-
fore, the new event types introduced for cache exploitation should be large for bad
locality behavior. The following events are generated via the command line option
“—cacheuse=yes”:

e Access Cost events AcCostl for L1 and AcCost2 for L2, respectively. These
events show bad temporal locality. As KCachegrind/Callgrind currently only can
handle integer values for event types, a value of 1000 is defined as Access Cost
for a cache miss. When there are two accesses to a cache line before eviction,
the cost is 500 for both of the accesses, and so on. Because of practical issues,
this model has to be changed: we need to relate the event to a code position. The
solution is to relate the access cost of all accesses to a cache line to the code
position which triggered the load of the line.

* Spatial Loss events SpLoss1 for L1 and SpLoss?2 for L2, respectively. These
events show bad spatial locality by providing the number of bytes not accessed
by the processor before eviction. Thus, SpLoss?2 directly gives the size of data
which was unnecessarily loaded into L2. This can be set into relation to the full
amount of data loaded into L2, which is the number of L2 misses multiplied
by the cache line size. Regarding relation of this event to a code position, the
unneeded bytes of a cache line are attributed to the position which triggered the
cache line load.

The used code relation for cache exploitation events unfortunately is not easy to
interpret. It would be better to use attribution to data structures, which currently is
not supported in Callgrind and can not be visualized in KCachegrind. At least, from
the code position, it can be looked up which data was accessed. With bad spatial
locality, the layout of the data in memory should be redone. It generally is better for
the cache to put data nearside which is used in a similar way by the program. Only
with bad temporal locality, code restructuring is needed.

2.2 Additional Callgrind Features

Callgrind consists of two main features: (1) the tracking of calls for building up the
call graph, getting call counts, and enabling collection of inclusive cost, and (2) the
cache simulator, which already was described in length. The first feature is useful
on its own, and as the cache simulator adds to the slowdown, it is switched off by
default. Without any options, only number of executed instructions executed (Ir
for “instructions read from cache”, which gives the same value in the simple cache
model) and function calls are collected.
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2.2.1 Control Flow Collection

When analyzing a function alone, the control flow (e.g. number of loop iterations)
is interesting. This needs the collection of (conditional) jumps executed, and is
switched on via command line “—collect-jumps”. The jumps can be visualized in
KCachegrind next to the source code. However, there is an issue: as performance of
the compiler optimized version has to be analyzed, there can be quite some restruc-
turing done between source code flow and assembly code, leading the strange jump
annotation in the source. To avoid this confusion, it is better to look at the assembly
code annotated with jumps. For Callgrind to give output at instruction level, one has
to use the option “~dump-instr=yes”, which should be used always when analyzing
the control flow.

In KCachegrind, unconditional jumps are shown in blue, whereas conditional
jumps are shown in red (see Fig. 4).

Avoiding Slowdown for Uninteresting Program Phases

Often, there is uninteresting initialization going on at program start. Such program
phases can be executed with a slowdown of only factor 2 — 3 (which is the slowdown
of running a code in Valgrind without any additional instrumentation) by chang-
ing the instrumentation mode to “off”. For the instrumentation mode to be off at
program start, use “—instr-atstart=yes”. For toggling instrumentation mode when
entering/leaving a function, use “—toggle-collect=function”. Note that function is
allowed to contain wildcards “*” (matching zero or more arbitrary characters) and
“?” (matching one arbitrary character).

Instrumentation mode also can be explicitly set in the program to be analyzed by
including the header callgrind.h and using a Valgrind Client Request e.g. by
inserting the C preprocessor macro CALLGRIND_START_INSTRUMENTATION.
For further details, see the Callgrind online manual.

When cache simulation is done, it is important to understand that the cache is
fully flushed at changes of the instrumentation mode. To not see the many cold
misses, one should use a “warm-up” phase after switching on instrumentation,
where no collection of events is done. For details on switching on/off the collec-
tion mode, see the online manual.

Interactive Control

While Callgrind is running, its current status (function call stack, events collected)
can be requested any time with “callgrind_control -b