

Tools for High Performance Computing

Michael Resch · Rainer Keller · Valentin Himmler ·
Bettina Krammer · Alexander Schulz
Editors

Tools for High Performance
Computing
Proceedings of the 2nd International
Workshop on Parallel Tools for High
Performance Computing,
July 2008, HLRS, Stuttgart

Michael Resch, resch@hlrs.de
Rainer Keller, keller@hlrs.de
Valentin Himmler, himmler@hlrs.de
Bettina Krammer, krammer@hlrs.de
Alexander Schulz, schulz@hlrs.de

Höchstleistungsrechenzentrum
Stuttgart (HLRS)
Nobelstr. 19
70569 Stuttgart
Germany

Front cover figure: Visualisation of Parallel Tools for HPC, Vampir, Totalview, Acumem, Kcachegrind
and the NEC SX-8

ISBN 978-3-540-68561-6

DOI 10.1007/978-3-540-68564-7

e-ISBN 978-3-540-68564-7

Library of Congress Control Number: 2008927892

Mathematics Subject Classification (2000): 68-06, 68N18, 68Q85 68Q60, 68U99, 94A99

c© 2008 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations
are liable for prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

Cover design: WMXDesign, Heidelberg

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com

Preface

Developing software for current and especially for future architectures will require
knowledge about parallel programming techniques of applications and library pro-
grammers. Multi-core processors are already available today, and processors with a
dozen and more cores are on the horizon.

The major driving force in hardware development, the game industry, has al-
ready shown interest in using parallel programming paradigms, such as OpenMP
for further developments. Therefore developers have to be supported in the even
more complex task of programming for these new architectures.

HLRS has a long-lasting tradition of providing its user community with the
most up-to-date software tools. Additionally, important research and development
projects are worked on at the center: among the software packages developed are
the MPI correctness checker Marmot, the OpenMP validation suite and the MPI-
implementations PACX-MPI and Open MPI. All of these software packages are be-
ing extended in the context of German and European community research projects,
such as ParMA, the InterActive European Grid (I2G) project and the German Col-
laborative Research Center (Sonderforschungsbereich 716). Furthermore, indus-
trial collaborations, i.e. with Intel and Microsoft allow HLRS to get its software
production-grade ready.

In April 2007, a European project on Parallel Programming for Multi-core Ar-
chitectures, in short ParMA was launched, with a major focus on providing and
developing tools for parallel programming.

This project is funded through the ITEA initiative and involves partners from
industry and research from application providers and tools developers, such as plat-
form provider Bull, Allinea with its parallel debugger DDT, the Center for Informa-
tion Services and High Performance Computing (ZIH) with the parallel performance
analyser Vampir-NG and the Central Institute for Applied Mathematics (ZAM) with
Kojak/Scalasca.

As a spin-off of all these activities the 1st Parallel Tools Workshop was held on
7-9th of July, 2007 at the High-Performance Computing Center Stuttgart (HLRS).
Participants from research and developers from science and industry were invited
to this interactive workshop which attracted 67 scientists from all over the world.

v

vi Preface

The focus was on presentations on the various tools, but also on giving hands-on
sessions to demonstrate the strengths of each tool.

With this year’s 2nd Parallel Tools Workshop on July the 7th/8th, HLRS wants
to offer its industrial and scientific user community, precisely this information in
the form of a thorough publication on the software packages, again ranging from
debugging tools to performance analysis and best practices in integrated developing
environments for parallel platforms. The papers of this workshop are presented here.
Last year’s workshop brought together software developers from the US, Germany,
France and Great Britain, and we expect an even wider audience this year.

This year’s contributions are in the fields of Integrated Development Environ-
ments, Parallel Debugging and Performance Analysis tools from a wide range of
scientific and industrial tool developers. This includes tools from vendors such as
Cray, Intel, IBM, Sun, Acumem, Allinea and Totalview, as well as research institu-
tions, including the University of Oregon, Technical University of Dresden and the
Research Center in Juelich.

Stuttgart, April 2008 Michael Resch, Rainer Keller
Valentin Himmler, Bettina Krammer

Alexander Schulz

Contents

I Integrated Development Environments

Sun HPC ClusterTools™ 7+: A Binary Distribution of Open MPI 3
Terry Dontje, Don Kerr, Daniel Lacher, Pak Lui, Ethan Mallove, Karen
Norteman, Rolf Vandevaart, and Leonard Wisniewski

1 Introduction . 3
2 History . 4
3 Sun-Driven features . 5
4 Sun Product Activity . 13
5 Pros and Cons . 15
6 Future work and conclusions . 16
References . 17

An Integrated Environment For the Development of Parallel
Applications . 19
Gregory R. Watson and Craig E. Rasmussen

1 Introduction . 19
2 Challenges . 21
3 Architecture . 23
4 A Simple Case Study . 28
5 Future Directions . 31
6 Conclusion . 33
References . 34

Debugging MPI Programs on the Grid using g-Eclipse 35
Christof Klausecker, Thomas Köckerbauer, Robert Preissl, and
Dieter Kranzlmüller

1 Introduction . 35
2 Related Work . 36
3 Overview of g-Eclipse Approach . 37
4 Remote Builder . 38

vii

viii Contents

5 Grid Application Launchers . 39
6 Trace Viewer . 39
7 Conclusions and Future Work . 44
References . 44

II Parallel Communication and Debugging

Enhanced Memory debugging of MPI-parallel Applications in Open
MPI . 49
Shiqing Fan, Rainer Keller, and Michael Resch

1 Introduction . 49
2 Overview of Memcheck . 50
3 Design and Implementation . 51
4 Performance Implications . 53
5 Detectable error classes and findings in actual applications 57
6 Conclusion and future work . 59
References . 60

MPI Correctness Checking with Marmot . 61
Bettina Krammer, Tobias Hilbrich, Valentin Himmler, Blasius Czink, Kiril
Dichev, and Matthias S. Müller

1 Introduction . 62
2 Related Work . 62
3 Design of Marmot . 63
4 Collaboration with other tools . 70
5 Experiences with real Applications . 72
6 How to install and use Marmot . 75
7 Conclusion and Future Work . 76
References . 76

Memory Debugging in Parallel and Distributed Applications 79
Chris Gottbrath

1 Introduction . 79
2 The Challenges of Memory Debugging in Parallel

Development . 80
3 Classifying Memory Errors . 80
4 Detecting Memory Leaks . 82
5 The MemoryScape Debugger . 82
6 MemoryScape Architecture . 83
7 MemoryScape Features . 84
8 MemoryScape Usage Tips . 87
9 MemoryScape User Case Study: SIMULIA Uses MemoryScape

to Find and Fix Bugs Quickly . 88
10 Future MemoryScape Product Plans . 90
11 Conclusion . 90

Contents ix

III Performance Analysis Tools

Sequential Performance Analysis with Callgrind and KCachegrind 93
Josef Weidendorfer

1 Introduction . 93
2 Callgrind: a Call-Graph building Online Cache Simulator 97
3 KCachegrind: Profile Visualization . 105
4 Usage Example . 110
5 Future Development . 111
References . 113

Improving Cache Utilization Using Acumem VPE . 115
Erik Hagersten, Mats Nilsson and Magnus Vesterlund

1 Introduction . 116
2 Throughput Study of SPEC CPU 2006 . 118
3 First Generation Performance Tools Based on Hardware

Counters . 120
4 Enter: The New Performance Tool . 122
5 Utilization Study of the Worst SPEC CPU 2006 Applications 126
6 Tuning Example: 179.art . 128
7 Tuning Example: Revisiting the Throughput Applications 132
8 Conclusion . 134
References . 135

Parallel Performance Analysis Tools

The Vampir Performance Analysis Tool-Set . 139
Andreas Knüpfer, Holger Brunst, Jens Doleschal, Matthias Jurenz, Matthias
Lieber, Holger Mickler, Matthias S. Müller, and Wolfgang E. Nagel

1 Introduction . 139
2 Performance Analysis via Profiling or Tracing 140
3 Instrumentation with VampirTrace . 141
4 Run-Time Measurement and Event Recording 144
5 Trace Visualization with Vampir and VampirServer 148
6 Related Work . 154
7 Conclusions and Future Work . 154
References . 155

Usage of the SCALASCA toolset for scalable performance analysis of
large-scale parallel applications . 157
Felix Wolf, Brian J. N. Wylie, Erika Ábrahám, Daniel Becker, Wolfgang
Frings, Karl Fürlinger, Markus Geimer, Marc-André Hermanns, Bernd
Mohr, Shirley Moore, Matthias Pfeifer, and Zoltán Szebenyi

1 Introduction . 157
2 Overview . 158
3 Instrumentation and Measurement . 159

x Contents

4 Trace Analysis . 162
5 Understanding Performance Behavior . 164
6 Outlook . 166
References . 167

Evolution of a Parallel Performance System . 169
Allen D. Malony, Sameer Shende, Alan Morris, Scott Biersdorff, Wyatt
Spear, Kevin Huck, and Aroon Nataraj

1 Introduction . 169
2 TAU Performance System Design and Architecture 170
3 TAU Instrumentation . 172
4 TAU Measurement . 178
5 TAU Analysis . 183
6 Conclusion and Future Work . 186
References . 188

Cray Performance Analysis Tools . 191
Luiz DeRose, Bill Homer, Dean Johnson, Steve Kaufmann, and Heidi Poxon

1 Introduction . 191
2 The Cray Performance Analysis Tools . 192
3 Conclusions and Future Work . 198
References . 199

Index . 201

List of Contributors

Erika Ábrahám, 156
Daniel Becker, 156
Scott Biersdorff, 168
Holger Brunst, 139
Blasius Czink, 61
Luiz DeRose, 191
Kiril Dichev, 61
Jens Doleschal, 139
Terry Dontje, 3
Shiqing Fan, 49
Wolfgang Frings, 156
Karl Fürlinger, 156
Markus Geimer, 156
Chris Gottbrath, 79
Erik Hagersten, 114
Marc-André Hermanns, 156
Tobias Hilbrich, 61
Valentin Himmler, 61
Bill Homer, 191
Kevin Huck, 168
Dean Johnson, 191
Matthias Jurenz, 139
Steve Kaufmann, 191
Rainer Keller, 49
Don Kerr, 3
Christof Klausecker, 35
Andreas Knüpfer, 139
Thomas Köckerbauer, 35
Bettina Krammer, 61
Dieter Kranzlmüller, 35

Daniel Lacher, 3
Matthias Lieber, 139
Pak Lui, 3
Ethan Mallove, 3
Allen D. Malony, 168
Holger Mickler, 139
Bernd Mohr, 156
Shirley Moore, 156
Alan Morris, 168
Matthias S. Müller, 139, 61
Wolfgang E. Nagel, 139
Aroon Nataraj, 168
Mats Nilsson, 114
Karen Norteman, 3
Matthias Pfeifer, 156
Heidi Poxon, 191
Robert Preissl, 35
Craig E Rasmussen, 19
Michael Resch, 49
Sameer Shende, 168
Wyatt Spear, 168
Zoltán Szebenyi, 156
Rolf Vandevaart, 3
Magnus Vesterlund, 114
Gregory R. Watson, 19
Josef Weidendorfer, 93
Leonard Wisniewski, 3
Felix Wolf, 156
Brian J. N. Wylie, 156

xi

I
Integrated Development Environments

Sun HPC ClusterTools™ 7+: A Binary
Distribution of Open MPI

Terry Dontje, Don Kerr, Daniel Lacher, Pak Lui, Ethan Mallove, Karen Norteman,
Rolf Vandevaart, and Leonard Wisniewski

Abstract The Sun HPC ClusterTools 7 release was Sun’s first binary distribution
of the Open MPI software. This release marked a change in source-code base for
Sun from a proprietary code base derived from the Thinking Machines Corporation
Globalworks™ software to the open-source Open MPI software. Sun HPC Cluster-
Tools includes packages of binaries built from the Open MPI source code by the
Sun™ Studio compilers and install scripts for installing those packages across a
cluster of nodes. The Sun HPC ClusterTools team contributed a Sun Grid Engine
plug-in and developed the uDAPL Byte Transfer Layer module as its Infiniband so-
lution on Solaris™ operating system. Additionally, Sun HPC ClusterTools includes
examples of using DTrace to analyze performance and debug MPI applications.
Other product-focused activity included significant contribution to the development
of the MPI Test Tool (MTT) and development of a set of user documentation. This
paper describes the new Sun HPC ClusterTools based on Open MPI, focusing on
areas where Sun has contributed to Open MPI.

1 Introduction

In April 2006, Sun joined the Open MPI community and decided to use Open MPI
as the source-code base for its Sun HPC ClusterTools product, thereby replacing its
previous proprietary source-code base [1].

Open MPI was founded by researchers at Indiana University, University of Ten-
nessee, Los Alamos National Laboratory, and HLRS / University of Stuttgart. The
initial implementation was intended to be a clean-slate approach combining at-
tributes of each of those institutions’ previous MPI implementations [2, 3]. Today,
the Open MPI community includes 15 member institutions, another 9 contributor in-

Sun Microsystems, USA, e-mail: {Terry.Dontje,Don.Kerr,Daniel.Lacher,
Pak.Lui,Ethan.Mallove,Karen.Norteman,Rolf.Vandevaart,Leonard.
Wisniewski}@sun.com

3

mailto:Terry.Dontje@sun.com
mailto:Don.Kerr@sun.com
mailto:Daniel.Lacher@sun.com
mailto:Pak.Lui@sun.com
mailto:Ethan.Mallove@sun.com
mailto:Karen.Norteman@sun.com
mailto:Rolf.Vandevaart@sun.com
mailto:Leonard.Wisniewski@sun.com
mailto:Leonard.Wisniewski@sun.com

4 T. Dontje et al.

stitutions, as well as many individual developers and users. More information about
Open MPI can be found at http://www.open-mpi.org.

Sun HPC ClusterTools includes packages of binaries built from the Open MPI
source code by the Sun Studio compilers and install scripts for installing those
packages across a cluster of nodes [4]. The Sun HPC ClusterTools team contributed
a Sun Grid Engine plug-in and developed the uDAPL Byte Transfer Layer (BTL)
module as its Infiniband solution on Solaris [5, 6]. Additionally, Sun HPC Cluster-
Tools includes examples of using DTrace to analyze performance and debug MPI
applications [7]. Other product-focused activity included significant contribution to
the development of the MPI Test Tool (MTT) and development of a set of user doc-
umentation [8]. This paper describes the new Sun HPC ClusterTools based on Open
MPI, focusing on areas where Sun has contributed to Open MPI.

The rest of this paper is organized as follows. Section 2 gives a brief history of
the Sun HPC ClusterTools product from its proprietary era through its current Open
MPI participation. Sections 3 discusses several features developed by the Sun team
to augment support to include Sun systems and to utilize unique features of Sun
systems. Section 4 describes some of the activities in which the team participated
for the Sun HPC ClusterTools product and when applicable contributed to the com-
munity. Section 5 offers some pros and cons of using Open MPI as the source code
base vs. the proprietary ClusterTools code base and Section 6 wraps up with future
focus areas and conclusions.

2 History

In 1996, Sun acquired the Thinking Machines Corporation Globalworks product
and team. Globalworks was a set of parallel programming tools originally intended
to support a variety of operating system platforms. With the acquisition by Sun,
Globalworks was renamed Sun HPC ClusterTools and targeted solely as a binary
distribution of parallel programming tools for the Solaris operating system and the
SPARC® systems.

The first Sun HPC ClusterTools release not only included MPI libraries and a run-
time environment for launching parallel jobs as it does today, but it also included a
High Performance Fortran compiler, a parallel file system, the Prism parallel debug-
ger, the Sun Scalable Scientific Subroutine Library (S3L), and various other libraries
and utilities for parallel programming and cluster management [9]. Sun delivered
six releases derived from the Globalworks code base, concluding with the release of
Sun HPC ClusterTools 6 in March 2006, which was the first release to support So-
laris on x64. Over the course of its ten-year history, except for the MPI libraries and
run-time environment, the technology for the other tools were gradually integrated
into other products or disbanded.

In April 2006, Sun joined the Open MPI open-source community, as one of the
first vendors to embrace Open MPI as a clean-slate modular architecture with an
open community-based approach to development. In April 2007, Sun debuted the

http://www.open-mpi.org

Sun HPC ClusterTools™ 7+: A Binary Distribution of Open MPI 5

use of the Open MPI source code as its basis in Sun HPC ClusterTools 7, a binary
distribution of the Open MPI libraries and the Open Run-Time Environment (ORTE)
for launching parallel jobs, based specifically on Open MPI 1.2.

Sun released a Sun HPC ClusterTools 7.1 update release in November 2007 based
on Open MPI 1.2.4. Sun HPC ClusterTools 7 and 7.1 supported only Solaris 10.
However, the upcoming Sun HPC ClusterTools 8 release, based on Open MPI 1.3,
will be the first Sun release to support a binary distribution of Open MPI on the
Linux platform and also support OpenSolaris™ [10].

3 Sun-Driven features

3.1 uDAPL Byte Transfer Layer

When Sun joined Open MPI, Solaris did not support its own implementation of the
Infiniband (IB) Verbs API in contrast to the Open Fabrics Alliance (OFED) Verbs
implementation commonly used on Linux and other platforms [11]. Rather, Solaris
did support an implementation of the User-Level Direct Access Programming Li-
brary (uDAPL). The uDAPL API is a user-level library defined by the DAT Collabo-
rative to provide a transport-neutral infrastructure that provides RDMA capabilities
in user space [12].

In Open MPI, at the lowest-level in its MPI communication stack are protocol-
specific Byte Transfer Layers (BTLs). When launching a parallel job, an Open MPI
user can specify which BTLs to use for MPI communication. The uDAPL BTL was
originally developed by Indiana University for Linux and adapted by Sun to support
Solaris as well. To select the uDAPL BTL, a user launches a parallel job as follows:

mpirun -btl self,sm,udapl

In the scope of a community-based approach, supporting a low-level software
module different than the rest of the community presents a number of challenges,
with the greatest difficulty being the inability to directly leverage technological ad-
vances by other community members. To this end, in the future, Solaris will support
the OFED Verbs implementation, and the ClusterTools team will consequently be
able to collaborate directly with the majority of the Open MPI community on devel-
opment of Infiniband support.

3.2 Sun Grid Engine plug-in

Sun Grid Engine (SGE) is a resource manager which allows tight integration with
the parallel job launchers of various MPI implementations. SGE and its accompa-
nying open-source version Open Grid Engine are widely popular as free and open

6 T. Dontje et al.

resource managers. For Open MPI, Sun added an SGE plug-in module to support
the launch of Open MPI jobs on SGE.

A user can invoke an Open MPI job using SGE in several ways. The most com-
mon way to start a parallel job over SGE is by submitting a batch job. The Open
MPI mpirun command is embedded inside a batch script that will be executed
by qsub. This allows SGE to schedule the parallel job when there are sufficient
resources available for starting the parallel job on the number of nodes requested.
Using this method should give consistent and reproducible runs as all the informa-
tion can be specified inside the batch script.

Submit a batch job with the ’mpirun’ command
embedded in a script
shell$ cat script.sh
#!/sbin/sh
#$ -N jobname
#$ -j y
#$ -o out.$JOB_NAME.o$JOB_ID
#$ -pe orte 4
/path/to/mpirun -np $NSLOTS mpijob

shell$ qsub script.sh

The other way is to start an SGE interactive shell that would allow the user to log
on to the head node which is responsible for starting the parallel job via q.

Allocate an SGE interactive job with 4 slots
shell$ qsh -pe orte 4

Now run a 4-process Open MPI job
shell$ mpirun -np $NSLOTS mpijob

Submit an SGE and OMPI job and mpirun in one line
shell$ qrsh -V -pe orte 4 mpirun -np 4 mpijob

It is advantageous to run large jobs with SGE as the resource management sys-
tem. SGE allows the user to have exclusive use of a set of nodes dedicated to run
their code without being interfered by other users. With SGE, the user would not
need to come up with an explicit list of nodes to run. This simplifies the need to
parse a node list, especially on a large cluster environment on which the list of
nodes could be long. Also, nodes can become unavailable, but SGE always gives
you an up-to-date list of usable nodes and removes the unavailable ones from the
node list.

The ability to clean up temporary space and collect standard and error outputs
after each run are also particularly useful for running jobs across a large number of
nodes.

There is also an ability to limit an MPI job on a subset of nodes by specifying
the mpirun command in conjunction with a host list which identifies the subset of
nodes.

Sun HPC ClusterTools™ 7+: A Binary Distribution of Open MPI 7

SGE supports many popular operating systems. This helps to select and run code
on a cluster which is comprised of heterogeneous platforms. In the current SGE 6.1,
the job launching mechanism for sending parallel tasks to the execution hosts relies
on the “qrsh -inherit” command, which is an rsh-based mechanism. Since
the ports opened by rsh for each connection is limited to only 1024, for large paral-
lel jobs that need to run across hundreds or thousands of nodes at once, an SGE clus-
ter should be configured to use ssh as its backend mechanism for remote launching.

SGE gathers the resource usage from its job by appending an additional group ID
to a user ID while the job is running. Hence, SGE ships with its version of the RSH
daemon which includes this modification. SGE can be configured to use a vanilla
version of ssh that does not contain any changes for proper job accounting [13].
However, to achieve job accounting with ssh, the code for the ssh daemon needs
to be modified and built together with SGE. This is sometimes known as the ssh
Tight Integration. Modifying the SGE code for the ssh Tight Integration used to be
an audacious task with earlier SGE versions, but SGE 6.1 includes these changes to
simplify the task.

3.3 Sun Studio Compiler Support

Sun offers its own suite of compilers in its Sun Studio product. Sun Studio includes
C, C++, and Fortran compilers as well as the dbx debugger, performance libraries,
a program analyzer tool, support for OpenMP programs, and an integrated develop-
ment environment (IDE). Sun Studio supports both the Solaris and Linux operating
systems.

Open MPI supports compilation of its source code and Open MPI applications by
a number of compilers. Sun HPC ClusterTools is built using Sun Studio and supports
MPI applications built with Sun Studio and linked with the ClusterTools libraries.
For each release version of Sun HPC ClusterTools, consult the release notes to find
out which versions of Sun Studio are supported for compiling user applications.

There are numerous challenges when adding a new compiler to the support ma-
trix of an open-source code base. In the case of supporting Sun Studio, these chal-
lenges included adapting the code base to the stricter memory alignment required
by chips, incompatibilities in support levels among different compilers for various
C++ libraries and Fortran functionality, and ensuring that the best set of flags are
used. All of these challenges require constant monitoring as it is not expected that
community members are aware of restrictions and incompatibilities among all the
compilers supported by Open MPI. To make it easiest for users to use the Sun Stu-
dio compilers, the Open MPI compiler wrappers were updated to insert the best set
of flags automatically for the user at compile time. The following are examples of
compiler wrapper use for Sun Studio and their corresponding translations into actual
compile command lines.

% /opt/SUNWhpc/HPC7.0/bin/mpicc -o tmp tmp.c -showme
cc -I/opt/SUNWhpc/HPC7.0/include/openmpi

8 T. Dontje et al.

-I/opt/SUNWhpc/HPC7.0/include -o tmp tmp.c
-R/opt/mx/lib -R/opt/SUNWhpc/HPC7.0/lib
-R/opt/mx/lib/sparcv9
-R/opt/SUNWhpc/HPC7.0/lib/sparcv9
-L/opt/SUNWhpc/HPC7.0/lib
-lmpi -lopen-rte -lopen-pal -lsocket -lnsl -lrt -lm -ldl

% /opt/SUNWhpc/HPC7.0/bin/mpicc -o tmp -xarch=v9 tmp.c -showme
cc -I/opt/SUNWhpc/HPC7.0/include/openmpi

-I/opt/SUNWhpc/HPC7.0/include/v9
-o tmp -xarch=v9 tmp.c
-R/opt/mx/lib -R/opt/SUNWhpc/HPC7.0/lib
-R/opt/mx/lib/sparcv9
-R/opt/SUNWhpc/HPC7.0/lib/sparcv9
-L/opt/SUNWhpc/HPC7.0/lib/sparcv9
-lmpi -lopen-rte -lopen-pal -lsocket -lnsl -lrt -lm -ldl

3.4 MPI Profiling

Starting in Sun HPC ClusterTools 8, profiling support will take greater prominence
in the product. Moreover, there will be four new ways to access greater levels of
profiling information:

1. via DTrace probes,
2. via PERUSE probes,
3. via VampirTrace probes, and
4. via special hooks using Sun Studio Analyzer.

DTrace is a comprehensive dynamic tracing facility debuted in Solaris 10 that
can be used to examine the behavior of both user programs and the operating system
itself. Sun HPC ClusterTools 7 includes some examples of using Dtrace to examine
MPI programs. Sun HPC ClusterTools 8 will include some new DTrace providers
to examine various MPI state at key locations in the MPI message path.

DTrace allows one to place probes into code such that a DTrace script may be
used to get a view of what is happening in the code. In the case of MPI, we’ve cho-
sen to piggyback on the mpi_peruse framework, which specifies various events
within an MPI library and data available for that event. To use the mpi_peruse
framework, one usually has to have their user code write/register callbacks to be
called when a PERUSE event happens. What the DTrace mpi_peruse provider
does is expose these events via probes thus not requiring one to write actual code
to handle registration or logging info. The mpi_peruse provider provides probes
to all of the PERUSE events that are defined in the PERUSE specification. This
provider allows one to capture events such as

PERUSE_COMM_REQ_INSERT_IN_POSTED_Q
and

PERUSE_COMM_REQ_REMOVE_FROM_POSTED_Q

Sun HPC ClusterTools™ 7+: A Binary Distribution of Open MPI 9

to keep track of the posted queue depth. Likewise one can do similar queue inves-
tigations with the events that track unexpected messages. One can also track send
and receive requests.

All of this allows one to determine what may be happening within the MPI library
and do it in an unobtrusive way. That is while an MPI code is running you can
attach dtrace with a script that uses the mpi_peruse provider to one of the
processes and garner information that you are interested in. If it turns out that you
need to adjust the script you can and then reattach dtrace to the MPI process
without disrupting the MPI job. The following example is a netstat-like script
that shows you queue changes (requests, posted, unexpected) and data transferred
by the process dtrace is attached to.

/*
* Copyright (c) 2007-2008 Sun Microsystems, Inc.

* All rights reserved.

* Use is subject to license terms.

* $COPYRIGHT$

*
* Additional copyrights may follow

*
* $HEADER$

*/

BEGIN
{
recvs_bytes=0;
recvs_act=0;
recvs_posted_size=0;
recvs_unexp_size=0;
recvs_posted_matches=0;
recvs_unexp_matches=0;

sends_act=0;
sends_bytes=0;
output_cnt = 0;
printf("IN(Total) Q-sizes Q-Matches OUT\n");
printf("bytes act posted unexp posted unexp bytes act\n");
printf("%5d %6d %6d %5d %6d %5d %5d %6d \n",

recvs_bytes, recvs_act, recvs_posted_size,
recvs_unexp_size,
recvs_posted_matches, recvs_unexp_matches,
sends_bytes, sends_act);

}
/* Print Statistics every 1 sec */
profile:::tick-1sec
{
printf("%5d %6d %6d %5d %6d %5d %5d %6d \n",

recvs_bytes, recvs_act, recvs_posted_size,
recvs_unexp_size,
recvs_posted_matches, recvs_unexp_matches,
sends_bytes, sends_act);

++output_cnt;

10 T. Dontje et al.

}
profile:::tick-1sec
/output_cnt==22/
{
printf("IN(Total) Q-sizes Q-Matches OUT\n");
printf("bytes act posted unexp posted unexp bytes act\n");
printf("%5d %6d %6d %5d %6d %5d %5d %6d \n",

recvs_bytes, recvs_act, recvs_posted_size,
recvs_unexp_size,
recvs_posted_matches, recvs_unexp_matches,
sends_bytes, sends_act);

output_cnt=0;
}

/* Collect Send statistics */
/* Collect Active Send Requests */
mpi__peruse$target:::PERUSE_COMM_REQ_ACTIVATE
/args[3]->mcs_op=="send"/
{
++sends_act;

}

/* Collect Removal of Send Requests */
mpi__peruse$target:::PERUSE_COMM_REQ_NOTIFY
/args[3]->mcs_op=="send"/
{
--sends_act;

}

/* Collect bytes Sent */
mpi__peruse$target:::PERUSE_COMM_REQ_XFER_END
/args[3]->mcs_op=="send"/
{
sends_bytes += args[3]->mcs_count;

}

/* Collect Active Recv Request */
mpi__peruse$target:::PERUSE_COMM_REQ_ACTIVATE
/args[3]->mcs_op=="recv"/
{
++recvs_act;

}

/* Collect Removal of Recv Request */
mpi__peruse$target:::PERUSE_COMM_REQ_NOTIFY
/args[3]->mcs_op=="recv"&&recvs_act>0/
{
--recvs_act;

}

/* Collect Request Placed on Posted Q */
mpi__peruse$target:::PERUSE_COMM_REQ_INSERT_IN_POSTED_Q
/args[3]->mcs_op=="recv"/

Sun HPC ClusterTools™ 7+: A Binary Distribution of Open MPI 11

{
++recvs_posted_size;

}

/* Collect Msg matched Posted Q */
mpi__peruse$target:::PERUSE_COMM_MSG_MATCH_POSTED_REQ
/args[3]->mcs_op=="recv"/
{
++recvs_posted_matches;

}
mpi__peruse$target:::PERUSE_COMM_MSG_MATCH_POSTED_REQ
/args[3]->mcs_op=="recv"&&recvs_posted_size>0/
{
--recvs_posted_size;

}

/* Collect messages in unexp Q */
mpi__peruse$target:::PERUSE_COMM_MSG_INSERT_IN_UNEX_Q
/args[3]->mcs_op=="recv"/
{
++recvs_unexp_size;

}

/* Collect messages removed from unexp Q */
mpi__peruse$target:::PERUSE_COMM_MSG_REMOVE_FROM_UNEX_Q
/args[3]->mcs_op=="recv"&&recvs_unexp_size>0/
{
--recvs_unexp_size;

}

/* Collect messages removed from unexp Q */
mpi__peruse$target:::PERUSE_COMM_REQ_MATCH_UNEX
/args[3]->mcs_op=="recv"/
{
++recvs_unexp_matches;

}

/* Collect bytes being recieved */
mpi__peruse$target:::PERUSE_COMM_REQ_XFER_CONTINUE
/args[3]->mcs_op=="recv"/
{
recvs_bytes += args[3]->mcs_count;

}

END
{
}

To invoke the above DTrace script, you execute the following command.

% dtrace -q -p 10625 -s mpistat.d

12 T. Dontje et al.

IN(Total) Q-sizes Q-Matches OUT
bytes act posted unexp posted unexp bytes act

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
5 1 1 0 1 0 0 0
5 1 1 0 1 0 0 0
5 1 1 0 1 0 0 0
5 1 1 0 1 0 0 0
5 1 1 0 1 0 0 0
5 1 1 0 1 0 0 0
5 1 1 0 1 0 0 0
5 1 1 0 1 0 0 0
10 1 1 0 2 0 0 0
10 1 1 0 2 0 0 0
10 1 1 0 2 0 0 0
10 1 1 0 2 0 0 0
10 1 1 0 2 0 0 0
10 1 1 0 2 0 0 0
10 1 1 0 2 0 0 0
10 1 1 0 2 0 0 0
15 1 1 0 3 0 0 0
15 1 1 0 3 0 0 0

IN(Total) Q-sizes Q-Matches OUT
bytes act posted unexp posted unexp bytes act
15 1 1 0 3 0 0 0
15 1 1 0 3 0 0 0
15 1 1 0 3 0 0 0
15 1 1 0 3 0 0 0
15 1 1 0 3 0 0 0
15 1 1 0 3 0 0 0

MPI PERUSE is a profiling interface integrated into the Open MPI code base [14,
15]. The Sun HPC ClusterTools 8 release will be the first ClusterTools release with
the MPI PERUSE interfaces compiled in. Moreover, as described previously, the
DTrace functionality above was able to leverage the MPI PERUSE infrastructure in
the Open MPI code base to more readily implement DTrace providers.

ZIH, TU Dresden has recently integrated VampirTrace functionality into the
Open MPI code base [16]. VampirTrace can be used to output traces in Open Trace
Format (OTF). Sun HPC ClusterTools 8 will include these VampirTrace traces.

Sun Studio Analyzer can be used to analyze MPI programs. The Sun HPC Clus-
terTools team has added support for MPI states, which can be used by Analyzer to
visualize the progress of the processes in an MPI program.

Sun HPC ClusterTools™ 7+: A Binary Distribution of Open MPI 13

4 Sun Product Activity

4.1 Installation

Sun HPC ClusterTools includes Solaris packages and a set of utilities for easily
installing all the ClusterTools packages on a cluster of nodes. Once the installa-
tion is complete, all the ClusterTools software will appear in /opt/SUNWhpc/
HPC<release number>, e.g. /opt/SUNWhpc/HPC7.0. The user can have mul-
tiple versions of ClusterTools installed with each installation varying the target di-
rectory based on release number. There is a tool ctact which allows the user to
activate a particular release number, resulting in symbolic links being created in
/opt/SUNWhpc to the appropriate directories in /opt/SUNWhpc/HPC<release
number>.

The ctinstall script enables installation of the Sun HPC ClusterTools soft-
ware locally on each node or in a single NFS location with symbolic links created
on each node pointing to the NFS location. On a cluster of nodes, ctinstall pro-
vides a convenience in that the software can be installed on all the nodes in a single
command.

As the Solaris packaging system evolves, so will the ability to install Sun
HPC ClusterTools packages efficiently. Similarly, with support on Linux, Sun HPC
ClusterTools will be able to leverage existing installation technologies such as
ROCKS [17].

4.2 MPI Testing Tool

High quality MPI implementations are software packages so large and complex that
automated testing is required to effectively develop and maintain them [18]. Per-
formance is just as important as correctness in MPI implementations, and therefore
must be an integral part of the regression testing assessment. However, the number
of individual tests taken in combination with portability requirements, scalability
needs, and runtime parameters generates an enormous set of testing dimensions.
The resulting testing space is so large that no single organization can fully test an
MPI implementation. Therefore, a testing framework suitable for MPI implementa-
tions must be able to combine testing results from multiple organizations to generate
a complete view of the testing coverage.

Many MPI test suites and benchmarks already exist that can verify the correct-
ness and performance of an MPI implementation. Additionally, MPI implementa-
tion projects tend to have their own internal collection of tests. However, running
a large set of tests manually on a regular basis is problematic; human error and
changing underlying environments will cause repeatability issues.

A good method for regression testing in large software projects is to incorporate
automated testing and reporting, run on a regular basis. Abstractly, a testing frame-

14 T. Dontje et al.

work is required to: obtain and build the software to test; obtain and build individual
tests; run all tests variations; and report both detailed and aggregated testing results.
Additionally, since the High Performance Computing (HPC) community produces
open source implementations of MPI that include contributions from many different
organizations, MPI implementation testing methodology and technology must also:

• Be freely available to minimize the deployment cost.
• Easily incorporate thousands of existing MPI tests.
• Support simultaneous distributed testing across multiple sites, including operat-

ing behind organizational security boundaries (e.g., firewalls).
• Support on-demand reporting, specialization, and email reports.
• Support execution of parallel tests, and therefore also support a variety of cluster

resource managers.

With Cisco and Indiana University, we have therefore created the MPI Testing
Tool (MTT), an MPI implementation-agnostic testing tool to satisfy these needs,
and have prototyped its use in the Open MPI project. MTT has enabled us to track
regressions on our Solaris clusters on a nightly basis. Moreover, we have extended
MTT to support developer and release engineering environments for building and
installing Sun HPC ClusterTools.

4.3 Documentation

Sun HPC ClusterTools includes a set of user documentation available as a down-
loadable tar-file or online as html- or pdf- files. The documentation set includes
the following:

• Sun HPC ClusterTools Software Migration Guide: collection of hints for users
migrating from Sun HPC ClusterTools 6 to Sun HPC ClusterTools 7 and beyond.

• Sun HPC ClusterTools Software Installation Guide: description of how to install
the ClusterTools software referenced in Section 4.1.

• Sun HPC ClusterTools Software User’s Guide: basic usage of ClusterTools and
the primary commands for compiling and running a parallel MPI job.

• Sun HPC ClusterTools Software Release Notes: a summary of new features in
the latest release and a compendium of significant defects that the user is likely
to experience.

In future releases, there are plans to create an administrator’s guide, an MPI pro-
gramming guide, and a performance guide. Sun has also adapted its MPI man pages
for Open MPI and contributed those to the community.

Sun HPC ClusterTools™ 7+: A Binary Distribution of Open MPI 15

4.4 Third party support

Sun HPC ClusterTools supports both the Totalview (by Totalview Technologies) and
DDT (by Allinea) parallel debuggers [19, 20]. To ensure that these parallel debug-
gers work properly with Open MPI, Sun worked closely with the community and
these third-party vendors. In particular, Open MPI has hooks to supply the appropri-
ate symbols to the parallel debuggers. Additionally, Open MPI includes additional
functionality which provides information about MPI message queues to the parallel
debuggers to view the states of these queues.

Sun HPC ClusterTools also supports PBS Professional (by Altair) [21]. Although
Open MPI supports a number of resource managers, Sun does not officially support
all of them. Sun HPC ClusterTools supported PBS Pro before joining Open MPI
and continues to do so. Although Sun does not officially support all the resource
managers, Sun works with its customers to provide a comprehensive HPC stack,
even if some of those components are not provided by Sun.

5 Pros and Cons

This section describes some of the pros and cons of using ClusterTools 7 vs. Clus-
terTools 6.

5.1 Pros

Leveraging the community. With a proprietary MPI implementation, it would be
costly to remain competitive in all state-of-the-art features and technologies. In a
community, we can contribute Sun-focused features and support with advice on
ways to improve those Sun features. Conversely, we benefit from the many impor-
tant new features developed by the research community. For example, the Open MPI
community benefits from research by Indiana University, University of Tennessee,
University of Houston, and HLRS / University of Stuttgart in areas such as fault
tolerance, checkpoint / restart, and collectives.

Clean-slate architecture. The clean-slate approach of Open MPI mirrors what we
would have needed to do with our proprietary implementation to address the in-
creased scalability required not only by the top-tier users but also by the volume
users as MPI becomes more prevalent. The modular architecture of Open MPI is
well-suited for the flexibility needed to address the diversity of users of MPI today.
That is, the ability to plug-in efficient modules for communication and resource
management enables the core MPI implementation to be adaptable to the prefer-
ences of a wide range of users.

16 T. Dontje et al.

No system-level administration. The architecture for our proprietary ClusterTools
implementation included system-level daemons to support running MPI applica-
tions. If you wanted to run the proprietary ClusterTools, you would need root ac-
cess or use a shared ClusterTools run-time environment. With resource managers
nowadays much more full-featured and assuming most of the responsibilities for-
merly managed by the ClusterTools system-level daemons, it is less important to
have system-level control and more important, at least for developers, to be able to
quickly install and debug a custom self-modified version of the MPI libraries and
the run-time environment totally in user space. Furthermore, there is no dependence
on a system administrator for maintenance or to experience system outages caused
by other users.

5.2 Cons

Robustness. As with any sophisticated software, time and use is needed to shake
out the most critical issues. The Open MPI source-code is only a couple years old as
compared to our proprietary ClusterTools, which had ten years of hardening through
customer use. However, with a large active community and the experience of the
community members, the hope is that the maturity process will happen much more
rapidly than with the proprietary ClusterTools.

No system-level administration. There are always some users who do have root
access and like to have complete control over their MPI jobs and run-time environ-
ment. Also, the run-time environment of the proprietary ClusterTools product had
some important utilities that can be covered by resource managers, but maybe are
not as focused on the MPI environment as much as an integrated run-time envi-
ronment. The Open MPI community continues to develop analogous utilities and
we will also provide utilities to the community and our customers as requirements
dictate.

Synchronization of Sun platforms. The inherent difficulty with the community-
based approach is that the community (and the state-of-the-art) are moving fast and
furious and not necessarily focused on testing every platform. So if you are a plat-
form owner, it is imperative to track regressions on your platform since others may
not realize. The bottom line here is be prepared to dedicate some resources to track
community progress as well as identify and fix issues quickly.

6 Future work and conclusions

For future work, we will draw upon our past experiences and positive attributes as
identified by customers of the proprietary ClusterTools product. For other areas of
future work, we plan to focus on areas that the marketplace dictates.

Sun HPC ClusterTools™ 7+: A Binary Distribution of Open MPI 17

Scalability, performance, and robustness remain primary competitive differen-
tiators. Scalability of job startup and collective operations on large clusters have
become as fundamentally necessary as latency and bandwidth performance of basic
communication. When threading is involved in such super-scalable jobs, increased
levels of thread safety will be required by users. In jobs with so many processes,
the robustness of the MPI implementation becomes more important than ever and
better yet the ability to gracefully react to failures of individual nodes and/or pro-
cesses. Processor affinity also remains important to aid in efficient and scalable
shared memory performance.

Beyond continually striving for world-class scalability and performance, increas-
ing the ease-of-use for customers, as with any MPI implementation, is very impor-
tant to help those customers who do not wish to become versed on the subtle details
of the MPI specification and/or the details of a particular MPI implementation.

With insatiable appetite for greater scale and performance and increasing require-
ments for reliability and persistence through failures, it seems such lofty goals are
best-suited for a community approach. Hence, our participation in the Open MPI
community and adoption of the Open MPI open-source code base as the basis for
our MPI product will attempt to leverage the state-of-the-art work of our fellow
community members while we contribute our experience as well in addition to our
product-oriented focus.

References

1. Sun HPC ClusterTools web page, http://www.sun.com/clustertools
2. Open MPI references, http://www.open-mpi.org/papers
3. Open MPI web page, http://www.open-mpi.org
4. Sun Studio web page, http://developers.sun.com/sunstudio
5. Sun Grid Engine web page, http://www.sun.com/software/gridware
6. Grid Engine web site, http://gridengine.sunsource.net
7. DTrace web page, http://www.sun.com/bigadmin/content/dtrace
8. MTT web page, https://svn.open-mpi.org/trac/mtt
9. Sistare, S., D. Allen, R. Bowker, K. Jourdenais, J. Simons and R. Title (1994), A Scalable

Debugger for Massively Parallel Message-Passing Programs, IEEE Concurrency, Vol. 2, No.
2.

10. OpenSolaris web site, http://www.opensolaris.org
11. OpenFabrics Alliance web site, http://www.openfabrics.org
12. DAT collaborative uDAPL web page, http://www.datcollaborative.org/

udapl.html
13. Using ssh with qrsh and qlogin, http://gridengine.sunsource.net/

howto/qrsh qlogin ssh.html
14. MPI PERUSE web site, http://www.mpi-peruse.org
15. Keller, R., Bosilca, G., Fagg, G., Resch, M. M., Dongarra, J. J. (2006), Implementation and

Usage of the PERUSE-Interface in Open MPI, LNCS 4192:347–355.
16. VampirTrace FAQ for Open MPI, http://www.open-mpi.org/faq/?category=

vampirtrace
17. ROCKS web site, http://www.rocksclusters.org
18. Hursey, Josh, E. Mallove, J. Squyres and A. Lumsdaine (2007), An Extensible Framework for

Distributed Testing of MPI Implementations, Euro PVM/MPI 07.

http://www.sun.com/clustertools
http://www.open-mpi.org/papers
http://www.open-mpi.org
http://developers.sun.com/sunstudio
http://www.sun.com/software/gridware
http://gridengine.sunsource.net
http://www.sun.com/bigadmin/content/dtrace
https://svn.open-mpi.org/trac/mtt
http://www.opensolaris.org
http://www.openfabrics.org
http://www.datcollaborative.org/udapl.html
http://www.datcollaborative.org/udapl.html
http://gridengine.sunsource.net/howto/qrsh_qlogin_ssh.html
http://gridengine.sunsource.net/howto/qrsh_qlogin_ssh.html
http://www.mpi-peruse.org
http://www.open-mpi.org/faq/?category=vampirtrace
http://www.open-mpi.org/faq/?category=vampirtrace
http://www.rocksclusters.org

18 T. Dontje et al.

19. Totalview Technologies web site, http://www.totalviewtech.com
20. Allinea web site, http://www.allinea.com
21. Altair web site, http://www.altair.com.

http://www.totalviewtech.com
http://www.allinea.com
http://www.altair.com

An Integrated Environment For the
Development of Parallel Applications

Gregory R. Watson and Craig E. Rasmussen

Abstract The development of parallel applications is becoming increasingly impor-
tant to a broad range of industries. Traditionally, parallel programming was a niche
area that was primarily exploited by scientists trying to model extremely compli-
cated physical phenomenon. It is becoming increasingly clear, however, that con-
tinued hardware performance improvements through clock scaling and feature-size
reduction are simply not going to be achievable for much longer. The hardware
vendor’s approach to addressing this issue is to employ parallelism through multi-
processor and multi-core technologies. While there is little doubt that this approach
produces scaling improvements, there are still many significant hurdles to be over-
come before parallelism can be employed as a general replacement to more tradi-
tional programming techniques. The Parallel Tools Platform (PTP) Project was cre-
ated in 2005 in an attempt to provide developers with new tools aimed at addressing
some of the parallel development issues. Since then, the introduction of a new gen-
eration of peta-scale and many-core systems has highlighted the need for such a
platform. We describe the current state of PTP, and discuss how a new generation of
tools is going to be required to meet the needs of these architectures.

1 Introduction

Parallel computers have existed in one form or another almost since the first com-
puters were available. The complexity introduced by parallelism was evident from
a very early stage, and has been a major impediment to the adoption of paral-

Gregory R. Watson
IBM T.J. Watson Research Center, 19 Skyline Drive, Hawthorne, NY 10532, e-mail:
grw@us.ibm.com

Craig E. Rasmussen
Los Alamos National Laboratory, Bikini Atoll Road, Los Alamos, NM 87594, e-mail:
crasmussen@lanl.gov

19

grw@us.ibm.com
crasmussen@lanl.gov

20 Gregory R. Watson and Craig E. Rasmussen

lelism in main stream application development. Many programming models and
techniques have been used to improve the simplicity and reliability of parallel pro-
grams. Dozens of new languages and language features were introduced, however
very few are still widely used. In the 1990’s, the Message Passing Interface (MPI)
standardization effort [12] was seen as a major step forward in parallel program-
ming models. The predominant programming models still in use are asynchronous
threads and MPI, although the use of partitioned global address space (PGAS) lan-
guages, such as Unified Parallel C (UPC) [16], appear to be increasing in popularity.
Although the PGAS languages simplify the programmer’s task to some extent, the
potential for deadlocks and other synchronization issues still remain a significant
challenge.

The first integrated development environment (IDE) was introduced when com-
puter input devices became sophisticated enough to support the seamless integra-
tion of development activities. Due to performance and usability issues, however,
there was often programmer resistance to the wholesale adoption of IDEs. The
quality and productivity improvements achieved using IDEs is now well estab-
lished [6, 7, 10, 13]. Combined with improvements to the IDEs themselves, this has
now resulted in IDEs being the predominant environment for software development.
Although a considerable number of IDEs are available today, many are limited to a
single operating system (e.g. KDevelop, Visual Studio), or are proprietary (e.g. Vi-
sual Studio, Xcode, Sun Studio). Eclipse is one of the few truly cross-platform IDEs
that has been designed for extensibility. Interestingly, although IDEs have been used
in the past to aid parallel application development [2, 3, 5, 9], none of these are still
available today. Few developers working on parallel scientific codes use IDEs at all.

The Eclipse Parallel Tools Platform (PTP) was launched in 2005 in an attempt to
address this situation. At this time, beowulf-style clusters had largely replaced cus-
tom proprietary parallel hardware for high performance computing (HPC), however
the predominant parallel application development environment was still command-
line tools. At the same time, the move towards multi-core architectures for conven-
tional applications was outpacing the ability of existing IDEs to provide the tools
necessary to exploit the new technology. As the HPC and conventional architectures
begin to converge, the need for sophisticated tools and new programming models
has become even more urgent.

PTP builds on the exemplary tools available in the Eclipse platform and the
C/C++ Development Environment (CDT) to provide support for C, C++, UPC, For-
tran, and in the future other parallel languages. It is also a platform, so that while
it provides a range of core services and tools, it is also designed to be extended to
support new tools, architectures, and programming models. In addition to Eclipse’s
advanced editing, build, and integrated source code management functionality, PTP
provides four additional features: advanced error checking and analysis tools that as-
sist the programmer to develop parallel applications; runtime monitoring and con-
trol of parallel jobs; debugging support for multi-process applications; and a per-
formance tools framework for the integration of parallel performance tools. In the
first of these, PTP provides a number of tools that are primarily aimed at the MPI
and OpenMP [4] programmer, and that reduce much of the tedious and error-prone

An Integrated Environment For the Development of Parallel Applications 21

nature of these programming models. Runtime monitoring and control of parallel
jobs abstracts the interaction between the developer and the parallel system, so that
the developer is able to seamlessly launch and control applications without needing
to focus on specific architecture details. The debugging support provides a paral-
lel debugging platform with basic debug functionality, but that can be extended to
encompass the new debugging paradigms that will be required on peta-scale and
multi-core systems. The performance tools framework allows existing performance
tools to be easily integrated into the Eclipse framework so they are accessible to the
developer.

In the following sections, we will outline some of the challenges faced by devel-
opers and our approach to overcoming these, the architecture and major features of
PTP, and future directions for the PTP project.

2 Challenges

With the growing popularity of multi-core systems as a means of improving ap-
plication performance, parallel programming is set to enter the main stream. Al-
though threads have been used effectively as the predominant programming model
for shared memory architectures, explicit threading is neither easy to program cor-
rectly, nor conducive to retrofitting applications in order to utilize the new architec-
tures. How existing applications will benefit from the new age of parallelism without
huge investments in reengineering is still very much an unanswered question.

In scientific computing, explicit parallelism has been employed with varying de-
grees of success for many years. Unfortunately, the homogeneous architectures that
have facilitated these programming models have reached a practical limit in the
search for peta-scale performance and beyond. One approach to addressing this is
to offload large portions of the computation load onto some form of accelerated
hardware. The result is a very heterogeneous environment that introduces signifi-
cant complexity into the application development process. In an attempt to address
these problems, a large scale effort is underway to develop new programming mod-
els and languages that will reduce the complex and error-prone nature of parallel
application development, and to develop new tools that will aid both legacy and
new applications to extract the maximum performance from the new architectures.
We will not focus on the issues facing scientific application developers any further,
as this has been addressed in detail elsewhere [8].

Since the use of IDEs is predominant across the computing industry, it is not
unreasonable to expect this to continue as the adoption of parallel architectures be-
comes more widespread. Whether the scientific developer community adopts IDEs
in a wholesale manner still remains an open question, but it is the opinion of the
authors that this will be an inevitable result of the complexity of the new platforms.
IDEs like Microsoft’s Visual Studio, Sun’s Studio One, Apple’s Xcode, Eclipse,
and others will need to be adapted to support these platforms, and the languages and
programming models that they encompass. Further, the tools that will be required

22 Gregory R. Watson and Craig E. Rasmussen

to extract optimal performance will also need to be integrated so that they form a
seamless part of the development lifecycle.

The challenges facing the IDE developer in adapting to this changing landscape
are numerous. Currently most IDEs make a number of assumptions about the envi-
ronment. These include:

• The IDE runs on same platform as the development environment (embedded sys-
tems are a notable exception)

• The developer has exclusive access to resources for development purposes
• Platform parallelism is handled by the operating system (threads/SMP)
• The development toolchain is simple (single pass)
• Optimized performance can be achieved by the compiler, or by manual reasoning

about behavioral characteristics of the program
• Languages will continue to be text-based
• The number of executing tasks is relatively small

In the future, many, if not all, of these assumptions will change. In scientific
computing it is already unusual for computational resources to be available locally,
and development environments are becoming complex enough to require significant
resources in themselves (e.g. building large applications can take many hours). In
these environments, the ability to develop applications remotely will be an important
requirement. Large-scale multi-core systems are likely to require similar remote
development capabilities.

Another assumption that is likely to change is that threading models will con-
tinue to be the predominant paradigm, and hence that parallelism will be managed
transparently by the operating system. The experience from scientific computing is
that parallel applications require significantly more infrastructure than can be pro-
vided by the operating system alone. This has the effect of complicating the build
model (requiring additional libraries, etc.), the runtime environment (applications
can no longer be run by simply launching a single executable), and application de-
bugging. Most tool chains used to build parallel applications currently assume that
the process is a linear sequence of compile and link steps. However, as architectures
become more complex, it is possible that many more activities will be required to
produce an optimized application. For example, multiple programming models may
be combined (as is already required for IBM’s Cell Broadband Engine), or informa-
tion gathered at runtime may be required to augment the static analysis performed
by the compiler.

The DARPA HPCS Language Project [11], an attempt by DARPA to improve
software development productivity, has resulted in at least one parallel language that
is no longer strictly text-based [1]. It may also become necessary to break this link
with traditional text-based languages in order to provide access to new language
features that are precluded by textual representation (visual programming is one
such example.)

The final assumption is also changing swiftly, with peta-scale machines expect-
ing in the order of 1M executing tasks, and existing threaded applications, which
already exhibit thousands of threads, are likely to also increase in size significantly.

An Integrated Environment For the Development of Parallel Applications 23

Dealing with large numbers of objects (threads, processes, etc.) raises many scala-
bility issues, both in the ability of the IDEs user interface to display and manage the
objects, and in communication services that are used between remote systems and
the local environment.

All these assumptions can have a profound influence on the architecture and func-
tionality of an IDE, but there are also additional challenges. As programming mod-
els evolve, and new languages are developed, the IDE needs to be able to adapt
without a significant re-engineering effort. This also applies to the new types of
hardware and systems that are currently under development. It is also clear that the
tools required for parallel programming are going to have to be significantly more
powerful that those available today. In particular, it is likely that static analysis of
programs and refactoring will play an important part in making parallel program-
ming more widely acceptable. In order to support these types of tools, an IDE must
provide the necessary infrastructure to make this possible. Such infrastructure is
decidedly more complex than that required for simple syntax highlighting or pro-
viding an outline view of the program, or that is typically available in editors such
as Emacs.

From our early analysis of existing IDEs in 2005, there was only one that came
close to meeting the criteria for a parallel development environment, and that is what
we used for the basis of PTP. Of course, not all the issues have yet to be addressed,
but the flexibility and extensibility of Eclipse will ensure that PTP will be able to
evolve to support the demands of future parallel application developers.

3 Architecture

The Parallel Tools Platform is an extension to the Eclipse platform that fulfills three
main goals: provide the tools and infrastructure necessary for advanced error check-
ing and analysis of parallel applications; provide a runtime environment that allows
developers greater transparency into the systems on which they are developing ap-
plications; and provide a debugger that will allow developers the ability to more
easily locate errors and anomalies in program behavior. In the following sections
we will describe each of these aspects of PTP in more detail.

3.1 Analysis Tools

The PTP analysis tools are aimed at providing Eclipse with an additional feature set
that is designed to aid the development of parallel applications. These tools are cur-
rently targeted at the MPI and OpenMP programming models, but we fully expect
them to be extended to other models or languages as the need arises.

24 Gregory R. Watson and Craig E. Rasmussen

3.1.1 Advanced Help and Content Assist

Eclipse includes an integrated help system that provides a help browser and con-
text sensitive help that can be accessed directly from the user’s editor session. PTP
augments this help system with MPI- and OpenMP-specific information in order
to improve the developer experience when using these programming models. Ref-
erence information about the MPI and OpenMP API, including arguments, return
type, and a description, are available via the help browser or by simply placing the
cursor over an API in the editor view to activate hover help. The Eclipse content
assist has also been augmented to enable auto completion of APIs and arguments
while typing.

3.1.2 Artifact Analysis

This analysis tool allows the developer to more easily work with MPI and OpenMP
codes by providing a higher level abstraction of the APIs. Like the outline view1, the
artifact view shows a list of all MPI function calls, Open MPI pragmas, and other
artifacts in the program. Figure 1 shows the MPI artifact view. Navigation to the
source code location of these artifacts is achieved by clicking on the artifact in the
view, or by using the icons in the navigation bar.

In addition to augmented views, the artifact analysis also provides more advanced
error checking features than are typically available in Eclipse. These are the types
of checks that could be made by compilers, but by providing an integrated tool it is
possible to provide error reporting much earlier in the development cycle. Currently,
checks for many of the known OpenMP programming errors are provided.

Fig. 1 View showing MPI artifacts discovered in the source code

1 The outline view provides an outline of the program showing its structural elements.

An Integrated Environment For the Development of Parallel Applications 25

3.1.3 Barrier Analysis

The barrier analysis tool can be used to detect potential deadlocks in MPI applica-
tions. The tool does this by identifying the location of all MPI barrier statements2 in
the application (which may be scattered throughout the source code), and constructs
barrier matching sets. Each set comprises all the barrier statements that could exe-
cute in parallel. Using this information, it is possible to determine if there are any
barrier statements that do not have a matching barrier, and flag these as potential
deadlock errors. In addition, a barrier view is provided to enable the easy navigation
to barrier statements in the source code. Figure 2 shows an example of the barrier
view containing a list of barrier sets.

Fig. 2 View showing barrier matching sets and barrier errors that were discovered using static
analysis

3.1.4 Concurrency Analysis

Like the barrier analysis tool, the concurrency analysis tool is used to detect po-
tential concurrency problems, but for OpenMP (threaded) applications. The con-
currency analysis tool allows the developer to choose a particular expression, and
will evaluate and identify all expressions that could execute concurrently with the
selected expression. Since it is important to ensure that only expected expressions
execute in parallel, this tool can be used to detect potential race and deadlock con-
ditions.

3.2 Runtime Tools

One of the difficulties facing the parallel application developer is the lack of trans-
parency about the behavior and status of applications and the machines that they run
on. Further, many parallel systems have a more complex interface than POSIX-style
execution, and because they are a scarce resource, typically employ a job scheduler

2 An MPI barrier causes each process to wait until all processes have reached a barrier. It is used
to synchronize all processes.

26 Gregory R. Watson and Craig E. Rasmussen

to manage access to the computational resources. Not only must the developer spend
time learning the interfaces and integrating these with their development processes,
but each iteration of the development cycle can be encumbered with unnecessary
and tedious activities.

To facilitate a more productive development environment, PTP provides a num-
ber of abstractions that simplify the interaction with target systems. The first of these
is a runtime model3 that provides an abstract representation of the parallel system
that the developer is interacting with. This model forms the core of a model-view-
controller design pattern around which PTP is based. Information about the parallel
system, and applications running on the system, is fed into the model in the form of
events which update the status of model elements. PTP provides a number of views
into this model that enable the developer to monitor the status of the system and the
applications as they are executing.

Fig. 3 View showing the status of the first 220 nodes of a 1024 node cluster

The second abstraction that PTP provides is the notion of a resource manager,
which represents any subsystem that manages resources on a target system. Exam-
ples of resource managers include: MPI runtime systems; job schedulers; virtual
machines; and simulators. PTP allows multiple resource managers to be configured,
and places no restrictions on the location of the resources, so they can be local or re-
mote to the Eclipse environment. Internally, a resource manager is just another part
of the runtime model hierarchy, so the model views can be used to provide a display
of the status of any resource managers that have been configured. Interaction with
remote resource managers is achieved using a small proxy agent that is started on
the remote system using one of Eclipse’s built-in remote service providers. Commu-
nication with this agent can be tunneled over a secure ssh connection to address the
security requirements of many installations. In addition to monitoring activities, the
agent is also used to control resource manager operation, submit jobs for execution,

3 Not to be confused with a programming model. The runtime model only provides a model of the
parallel machine for monitoring and control purposes

An Integrated Environment For the Development of Parallel Applications 27

and initiate debug sessions. Figure 3 shows an example of the machines view for a
1024 node cluster.

Launching of parallel applications is managed through the normal Eclipse launch
configuration mechanism. PTP adds a parallel application launch type that allows
the developer to select the resource manager that will be used to control job sub-
mission, and supply resource manager specific attributes that specify resource con-
straints on the job. Once a job has been submitted, the runtime views allow the user
to monitor progress of the job on the target system. Figure 4 shows an example of
the jobs view with a selection of jobs in various states.

Fig. 4 View showing four jobs in various states (red - completed, green - running), and the 64
processes in job05

3.3 Debug Tools

A key aspect of any development process is the ability to effectively locate and
correct program errors. Debugging has traditionally been a difficult area for parallel
application developers, since traditional debugging methodologies only apply when
the number of parallel tasks remains small, and the very act of debugging can perturb
the application enough to make identifying temporal issues very difficult. Very few
parallel debuggers currently exist, so developers have, until recently, only had a
relatively few options:

• Purchase a commercial parallel debugger
• Attempt to use a sequential debugger (such as gdb) or a debugger wrapper (such

as mpigdb)
• Use debug print statements (printf or equivalent)

As only a small number of commercial parallel debuggers exist4, there is little
competition to drive innovation and new functionality, and with only a small poten-
tial market, this can be an expensive debug solution. Also, these debuggers suffer
from scalability problems when debugging applications larger than a few thousand
processes. The gdb or mpigdb options, while cheaper, also suffer from scalability
and usability issues. Neither the commercial nor open source solutions are inte-
grated with a complete development environment, so launching a debug session can

4 At the time of writing only two: TotalView and DDT.

28 Gregory R. Watson and Craig E. Rasmussen

be a challenging exercise. Using debug print statements, while neither scalable nor
powerful, is at least ubiquitous and easy to use. As a result, this has become the de
facto debugging paradigm for parallel programming.

Fig. 5 Parallel debug view showing a 32 process job being debugged

PTP attempts to overcome these limitations, by providing an integrated parallel
debugger that can be activated whenever the developer requires detailed debugging
information about the application under development. In addition to normal debug-
ging functionality, such as setting breakpoints, single stepping, viewing and altering
variables, etc., the debugger also gives the developer the ability to control and ma-
nipulate arbitrary sets of processes associated with a parallel application as it is
executing. By default, the debugger establishes a set of all processes in the applica-
tion run, and commands such as setting a breakpoint, single stepping, or resuming
execution can be applied to this set of processes. The set can be subdivided into an
arbitrary number of subsets (including individual processes) that allow finer con-
trol of application execution. Figure 5 shows the parallel debug view which allows
manipulation of sets of processes.

Debugger scalability is always an issue, and the PTP debugger is no exception.
However, the debugger infrastructure has been designed to scale, and so far has
proved effective up to the same application sizes that can be handled by the com-
mercial debuggers. In addition, because the PTP debugger is an open architecture,
we hope that it will be used as a platform to develop new debugging paradigms that
will be necessary to deal with applications that comprise hundreds of thousands or
millions of parallel tasks.

4 A Simple Case Study

In the following section, we will present a simple case study on using PTP for de-
veloping an MPI application. This will include describing the steps necessary to

An Integrated Environment For the Development of Parallel Applications 29

import and configure an existing MPI application in PTP, locate a potential dead-
lock situation, then launch the application under debugger control. The steps are as
follows:

1. Import the source files into an Eclipse-controlled project
2. Configure the project to correctly locate external tools (e.g. the mpicc com-

mand)
3. Run the barrier analysis on the source code, and correct any potential deadlock

errors
4. Build the executable
5. Configure a launch configuration
6. Start a debug session

4.1 Importing

Eclipse offers a range of options for importing an existing application so that it can
be developed using PTP. We will describe the three main types here.

• Copying into the workspace. This first option allows an existing project to be
copied into the Eclipse workspace. It is useful if the developer wishes to keep the
original source files pristine, or if Eclipse will be used as the primary develop-
ment environment.

• Linking to an external project. This option allows an existing project to be used in
Eclipse, but without disturbing the location or layout of the files. Eclipse creates
an internal link to the project, so that the project files appear in the user interface.

• Checking out from a source code repository. This option allows a copy of
project controlled by a source code repository5 to be checked out into the lo-
cal workspace. Modifications to files are automatically detected by Eclipse, and
the developer can perform operations such as committing changes, comparing
versions, merging, branching, etc.

The developer simply selects the import method they desire, and imports the
source code into the Eclipse workspace. Eclipse is scalable enough to support very
large projects (thousands of files, millions of lines of code). Activities such as in-
dexing the source code (used for advanced searching, content assist, type and call
hierarchy views), are potentially long running and automatically take place in the
background without affecting the developer.

5 Eclipse supports CVS, SVN, and other repositories.

30 Gregory R. Watson and Craig E. Rasmussen

4.2 Configuring

Projects controlled by Eclipse have a large number of configurable options. Since
this application is using MPI, we require it to be compiled and linked with the
mpicc command. Also, the MPI analysis tools need to know the location of the
MPI header file mpi.h, so this also has to be added to the project configuration.
In Eclipse, building a project is controlled by a toolchain6. Both the compiler name
and the include path are set by modifying the toolchain options for the project.

4.3 Analyzing

The barrier analysis tool is invoked on the project using a special menu on the
Eclipse toolbar7 . The analysis will scan all source code in the project and compute
the barrier sets. Markers indicating the location of potential errors will be placed on
corresponding source files and when the source file is opened, at the source line lo-
cation in the file. The developer can now use this information to correct the deadlock
situation.

4.4 Building

Eclipse projects can be configured to automatically build each time an editor change
is saved, or by manually invoking the build command from an Eclipse menu. While
the build is running, the developer is able to continue to modify the source, perform
analysis, or undertake other activities that are not dependent on the build complet-
ing. Build progress is displayed in a special Progress view, that provides an estimate
of the percentage completed. Detailed output from the build is available in the Con-
sole view. If any errors are detected by the compiler or linker steps, the build will
terminate, and a list of the errors will be displayed in the Problems view. Markers
will also be placed on source files and displayed in the editor.

4.5 Launching

Once the build is complete, the developer must configure a launch configuration to
run (and debug) the application. A single configuration is used for both running and

6 A toolchain describes the sequence of commands required to convert the source code into a binary
executable.
7 The toolbar provides quick access to commonly used functions via a series of icons at the top of
the Eclipse window.

An Integrated Environment For the Development of Parallel Applications 31

debugging. The launch configuration specifies the attributes needed to launch the
application, such as the executable name, command line arguments, environment
variables, etc. These attributes are saved in the configuration, so they only need to
be specified once. After creating the configuration, the application can be run or
debugged by clicking a single button on the toolbar.

4.6 Debugging

When the developer is ready to debug the application, a single button click will in-
voke the debugger. Eclipse will automatically switch to display views for controlling
the application (e.g., single stepping), examining stack frame location, viewing vari-
ables, etc. Breakpoints can be set directly in the source code editor view by clicking
on the left edge of the view. Once the debug session is completed, the developer can
switch back to the runtime and editor views with a single click.

5 Future Directions

There are many aspects of parallel application development for both peta-scale and
the emerging multi-core systems that still remain a major challenge. The current
programming models are unlikely to be adequate for applications designed to run
on peta-scale systems, and much more powerful tools will be required to optimize
performance for the next generation of heterogeneous hardware. If multi-core sys-
tems are going to become the performance panacea, then application developers
will need programming models and languages that are as simple and easy to un-
derstand as those being used today. Eclipse and PTP are well placed to assist with
both these environments. In the following sections, we briefly examine areas where
future development of PTP appears promising.

5.1 Analysis Tools

There are a number of tools available that provide analysis information that can be
derived from running the application, such as trace and profile information, and that
could be used to augment static analysis and provide greater insights into program
operation. In addition, there are opportunities to better utilize compiler generated
information to assist in the application development process. One such tool being
actively developed will use compiler generated parallelization analysis to aid the
developer in parallelizing selected code regions.

32 Gregory R. Watson and Craig E. Rasmussen

5.2 Performance Tools

PTP provides a performance tools framework for integrating performance tools with
Eclipse, however this is only a small part of the functionality required to support in-
tegrated performance analysis and optimization of parallel applications. Ideally, the
developer should be able to invoke a performance analysis tool as easily as launch-
ing or debugging the application, have the data automatically collected and ana-
lyzed, and the results used to annotate the source code. The Tuning and Analysis
Utilities (TAU) have already been integrated with PTP, and a number of other per-
formance tools groups are also exploring Eclipse as a delivery platform. However,
there is still much work to do to ensure that performance tools can be easily and
effectively used as part of the development workflow.

5.3 Multi-core Tools

The current PTP tool set has been targeted primarily at distributed memory archi-
tectures and programming models (with the exception of OpenMP), however there
is a growing requirement for tools to ease the transition from existing architectures
to multi-core systems. At least three kinds of tools could benefit these applications:
tools to aid in parallelizing sequential applications in order to make better use of
the increased compute resources; performance analysis tools specifically targeting
applications running on multi-core systems; and debugging tools that better manage
the extra complexity introduced by multi-core architectures.

5.4 New Languages and Programming Models

A variety of efforts are underway to develop new languages and programming mod-
els for parallel computing. In addition to the DARPA HPCS Language Project,
there are also projects aimed at enhancing existing languages, such as UPC, Co-
Array Fortran (CAF) [14], and Titanium [18], that add new functionality to better
support parallel programming. New programming models, such as Asynchronous
Partitioned Global Address Space (APGAS), on which IBM’s X10 language [17] is
based, are being developed. There is considerable scope for adding support for these
languages and programming models to PTP.

5.5 New Debugging Methodologies

The existing interactive debugging methodology for parallel applications is not sig-
nificantly different from that used for sequential applications. However, as the size

An Integrated Environment For the Development of Parallel Applications 33

of applications increases to peta-scale and beyond, it is not clear that this method-
ology will remain effective. In particular, if applications comprise millions of con-
currently executing tasks, just identifying which tasks are the source of the errors is
likely to become a highly challenging activity. The rich user interface and extensi-
bility of Eclipse provides an exciting opportunity to investigate new techniques for
analyzing, locating, and correcting errors in parallel programs.

6 Conclusion

The quest for greater hardware performance is driving a significant change in the
application development landscape. Both the scientific and mainstream computing
communities are facing the challenge of developing parallel applications that are
able to extract maximum performance from the new hardware. There is no doubt
that new tools, languages, and programming models will be needed to assist the
developer to reach this goal.

Although a number of integrated parallel tool environments have been developed
in the past, none are still in wide use today. It’s possible to speculate on the reasons
for this, but one factor is clear: none have been based on a framework that enjoys the
enormous popularity and the advanced features of the Eclipse platform. In addition
to an open, portable and robust platform, Eclipse also provides an extensive array of
advanced tooling that can be used by tool developers to create an integrated solution
to a wide array of programming activities.The Parallel Tools Platform builds on this
solid foundation, and provides an additional framework for developing and integrat-
ing tools for developing parallel applications. Currently, PTP provides a range of
tools that provide advanced error checking, static analysis, runtime monitoring and
control, and debugging services.

In addition to the existing tools, there are a number of efforts underway to im-
prove the range of tools and functionality that PTP provides. This includes extend-
ing the analysis support to encompass dynamic analysis, and better integration for
performance analysis tools. There are also active projects to enhance the ability of
Eclipse to work in distributed development environments, and to improve the refac-
toring support that is available for existing programming languages.

PTP is still a very young project, and there are many opportunities for improving
the capabilities to suit the advances in computing technology that will be introduced
over the next few years. The integrated nature of the platform also offers scope
for developing new tools, that may have not been possible in the past, to deal with
programming challenges that will be faced by both the peta-scale and many-core
communities.

Acknowledgements The authors would like to acknowledge the efforts of many contributors
without whom the Parallel Tools Platform would not exist. This includes the Eclipse Foundation,
Los Alamos National Laboratory, Monash University, IBM Corporation, University of Oregon,
Oak Ridge National Laboratory, and Technische Universität München, along with the many in-

34 Gregory R. Watson and Craig E. Rasmussen

dividuals who have shared their ideas and suggestions. Thanks also to Beth Tibbitts for various
images used in the document.

References

1. E. Allen, D. Chase, J. Hallett, V. Luchangco, J.-W. Maessen, G. Steele, S. Ryu, S. Tobin-
Hochstadt: The Fortress Language Specification. Available via http://research.sun.
com/projects/plrg/

2. B. Q. Brode, C. R. Warber: DEEP: A Development Environment For Parallel Programs. Pro-
ceedings of the International Parallel Processing Symposium, 1998, pp. 588–593

3. D. Callahan, K. Cooper, R. Hood, K. Kennedy, L. Torczon: ParaScope: A Parallel Program-
ming Environment. Proceedings of the First International Conference on Supercomputing,
Athens, Greece, June 1987

4. R. Chandra, R. Menon, L. Dagum, D. Kohr, D. Maydan, J. McDonald: Parallel Programming
in OpenMP. Morgan Kaufmann, 2000.

5. J. Cownie, A. Dunlop, S. Hellberg, A. J. G. Hey, D. Pritchard: Portable Parallel Programming
Environments - The ESPRIT PPPE Project. Massively Parallel Processing Applications and
Development, Netherlands, June 1994

6. A. Frazer: CASE and its Contribution to Quality. The Institution of Electrical Engineers, Lon-
don, 1993.

7. M. J. Granger, R. A. Pick: Computer-aided Software Engineering’s Impact on the Software
Development Process: An Experiment. Proceedings of the 24th Hawaii International Confer-
ence on System Sciences, January 1991, pp. 28–35

8. L. Hockstein, V. R. Basili: The ASC-Alliance Projects: A Case Study of Large-Scale Parallel
Scientific Code Development. IEEE Computer, Vol. 41, No. 3, March 2008, pp. 50–58

9. P. Kacsuk, J. C. Cunha, G. Dózsa, J. Lourenço, et. al.: A Graphical Development and Debug-
ging Environment for Parallel Programs. Parallel Computing Vol. 22, No. 13, February 1997,
pp. 1747–1770

10. P. H. Luckey, R. M. Pittman: Improving Software Quality Utilizing an Integrated CASE En-
vironment. Proceedings of the IEEE National Aerospace and Electronics Conference, May
1991, pp. 665–671

11. E. Lusk, K. Yelick: Languages for High-Productivity Computing: The DARPA HPCS Lan-
guage Project. Parallel Processing Letters, Vol. 17, No. 1, pp. 89–102, 2007

12. MPI: A Message Passing Interface Standard, Message Passing Interface Forum. Available via
http://www.mpi-forum.org, June 1995

13. R. J. Norman, J. F. Nunamaker Jr.: Integrated Development Environments: Technological and
Behavioral Productivity Perceptions. Proceedings of the Annual Hawaii International Confer-
ence on System Sciences, January 1989, pp. 996–1003

14. R. Numrich, J. Reid: Co-Array Fortran For Parallel Programming. In ACM Fortran Forum,
Vol. 17, No. 2, pp. 1–31, 1998

15. M. Snir, P. Hochschild, D. D. Frye, K. J. Gildea: The Communication Software and Parallel
Environment of the IBM SP2. IBM System Journal, IBM Corp., Vol. 34, No. 2, pp. 205–221,
1995

16. UPC Language Specification v1.2. UPC Consortium, Berkeley National Laboratory, 2005
17. The X10 Programming Language. Available via http://www.research.ibm.com/

x10
18. K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krishnamurthy, P. Hilfinger,

S. Graham, D. Gay, P. Colella, A. Aiken: Titanium: A High-Performance Java Dialect, Con-
currency: Practice and Experience. Vol. 10, pp. 825–836, 1998

http://research.sun.com/projects/plrg/
http://research.sun.com/projects/plrg/
http://www.mpi-forum.org
http://www.research.ibm.com/x10
http://www.research.ibm.com/x10

Debugging MPI Programs on the Grid using
g-Eclipse

Christof Klausecker, Thomas Köckerbauer, Robert Preissl, and
Dieter Kranzlmüller

Abstract With the increasing need for more computational power rises the number
of processors in modern high performance computers. Coupled to the scalability
of the system, the complexity of the communication between these processors in-
creases vastly. This development can also be seen in today’s Grid infrastructures,
where high numbers of resources are shared over long distances. As a result, there
is an intensified need for tools to support debugging and program understanding.
The focus of this work is on MPI applications running on Grid sites, and we de-
scribe the corresponding functionality of g-Eclipse’s developers perspective. The
g-Eclipse framework is based on the open source Eclipse platform and extends its
functionality by middleware independent plug-ins for Grid users, operators and de-
velopers. The provided functionality of the developer perspective includes remote
building, debug support for individual MPI processes as well as graphical represen-
tation of message-passing based communication. This paper provides an overview
of each of these functions and examples for their application in program develop-
ment.

1 Introduction

Grids today are established as a tool for scientists to solve their scientific prob-
lems. In order to utilise Grids, developers can either use the low-level functionality
of the individual Grid middleware, or work with independent development tools.
Apart from tools such as the Grid Development Tools (GDT) [2], which is based
on Globus Toolkit 4 (GT4) and service-oriented Grid computing there are not many
integrated development environments for Grid infrastructures available. To remedy

GUP – Institute of Graphics and Parallel Processing, Joh. Kelper University Linz,
Altenbergerstr. 69, A-4040 Linz, Austria/Europe, http://www.gup.jku.at/,
e-mail: cklause@gup.jku.at

This paper is in parts replicated from the diploma thesis of Christof Klausecker.

35

http://www.gup.jku.at/
cklause@gup.jku.at

36 Christof Klausecker et al.

this, g-Eclipse [16] 1,2 is being developed - an integrated and user-friendly middle-
ware independent environment.

The g-Eclipse framework provides a set of tools for different Grid actors offering
them three perspectives, supporting their role of either being a user, an operator or a
developer, developing applications for the Grid. Among other tools the event trace
and debugging functionality of g-Eclipse as described in this paper is settled in the
developers perspective.

This paper presents some aspects of the g-Eclipse’s developer perspective with
focus on the parts dealing with MPI applications running on Grid sites. The paper
is organized as follows: The next section provides an overview of related work in
this domain, followed by an overview of the approach in Section 3. The individual
components, the remote builder, the grid application launchers, and the trace viewer
are described in Section 4-6, before a summary and an outlook on future work con-
cludes the paper.

2 Related Work

From a chronological view point, the tools ATEMPT [3] and DeWiz [5] are seen
as the predecessors of the event trace functionality in g-Eclipse. The experiences
gathered with the design and usage of these tools were the main influences during
the development of the trace visualization component for g-Eclipse.

Apart from the two tools mentioned above, several other similar examples exist,
including Vampir [9] and Jumpshot [17] which mainly focus on performance visual-
isation. Other approaches providing debugging support for applications running on
the grid include tools like Worqbench [7], Net-dbx-G [11] and a grid-enabled ver-
sion of p2d2 [4]. The Worqbench framework allows to debug remote programs run-
ning in a Globus Toolkit 4 (GT4) environment, by adding an additional web-service
to it. While it offers integration into Eclipse using its own debugging front-end, it
does not provide support for executing MPI programs on the grid. Net-dbx [10] is a
Java based tool allowing to debug MPI applications over the internet. With Net-dbx-
G an enhanced version that supports grid environments exists. It offers a graphical
user interface implemented as Java applet, thus allowing to debug applications by
solely using a web browser. The p2d2 project created a client-server based debug-
ging architecture which provides its own graphical user interface, however the tool
is not publicly available.

Another related project is the Parallel Tools Project (PTP)3, which like g-Eclipse
is hosted by the Eclipse Foundation. It provides support for debugging parallel pro-

1 g-Eclipse is a two-year project funded under the European Union’s 6th Framework Programme,
Contract Number IST-0343272. Since the end of October 2006, g-Eclipse is also an official Eclipse
Technology Project.
2 http://www.geclipse.eu/
3 http://www.eclipse.org/ptp/

http://www.geclipse.eu/
http://www.eclipse.org/ptp/

Debugging with g-Eclipse 37

grams in Eclipse by offering a scalable parallel debugger. Yet, it has no explicit
support for grids.

3 Overview of g-Eclipse Approach

The g-Eclipse approach consists of three major components:

• Remote Builder
• Grid Application Launchers
• Trace Viewer

The builder compiles and links programs remotely, launchers take care of running
and debugging applications on the grid, and a graphical component allows to anal-
yse the communication between parallel processes based on pre-recorded program
traces.

Figure 1 shows the developed components put together into an Eclipse perspec-
tive, allowing to conveniently debug remote running MPI applications from the local
desktop.

Fig. 1 Debug perspective showing the views for MPI debugging

The debug view (a) of Eclipse’s standard debug perspective lists the remote run-
ning MPI processes. To provide a better overview of the processes and their current
state, the so called “Process View” (b) which displays a graphically representation
of each process can be used. Both of these views allow to steer the remote running

38 Christof Klausecker et al.

application by stepping through the program or resuming the debugee. The variables
view (c) shows the content of the selected process’ variables. The in- and output of
the remote running application are connected to the standard Eclipse console (d),
thereby providing the possibility to interact with the program. The C/C++ editor (e)
provided by CDT is used to display the source code. The trace viewer (f) shows a
pre-recorded trace allowing post-mortem analysis of the inter-process communica-
tion.

4 Remote Builder

An integral part of the functions of an Integrated Development Environment (IDE)
is the possibility to build projects from source code after modifying the code or
changing the resource where it should be executed. In the best case, this should
happen in a convenient way without forcing the user to leave the environment and
to enter cryptic commands on a console. A compiler and the corresponding linker
have to be executed somehow to create the binary executable file. The possibility to
build projects is also required during the debugging process, which is an iterative
process that requires source code changes, and is often carried out in a trial and error
fashion. However, running and debugging applications on a remote host introduces
a series of difficulties.

The simplest solution would be to compile the application on the local machine
and afterwards stage the executable to the grid. This would require a homogeneous
environment, which is per definition unrealistic in the grid world. In reality not only
the grid itself is heterogeneous, but the users, who develop and debug the appli-
cations, also have different operating systems with different libraries running on
machines with different architectures. Furthermore specific libraries, like for MPI,
are usually not installed on a desktop machine. As a result locally compiled binaries
may not be executable on the remote machine. In addition, some operating systems
do not even offer pre-installed compilers and linkers.

A possible solution would be to set up a complex cross compiling environment.
However the grid itself is heterogeneous, therefore this environment would have
to be reconfigured in case the developer wants to run his application on a node
with a different set-up. Another possibility is to transfer the sources to the remote
machine, compile them there and finally transfer the executable back to the local
machine where it is needed for debugging. These steps which have to be repeated
each time the source code is changed, may get extremely annoying, especially in
case of debugging where only small changes in the code are performed.

Therefore we added our own builder, the so called “Remote Builder” which can
be activated for C/C++ Development Tooling (CDT)4 Makefile projects. The remote
builder uses GridFTP [1] for data transfer and glogin [13] for command invocation,

4 http://www.eclipse.org/cdt/

http://www.eclipse.org/cdt/

Debugging with g-Eclipse 39

both connections stay alive to improve responsiveness. The output of the build pro-
cess is used to mark potential errors in the local source code editor.

5 Grid Application Launchers

After building a project, so-called launchers take care of running and debugging the
applications. Usually in Eclipse, these launchers start the applications locally, but in
a grid environment they should be started remotely on the grid resources.

For this reason we created our own launchers, in particular a newly developed
launcher called “C/C++ Grid MPI Application Launcher”. Again glogin is used to
create interactive connections to the desired sites in the grid. Using this connection
the application, which already resides on the remote host because of our remote
builder, is started. In case of debugging, for each process of the parallel applica-
tion, a GNU Project Debugger (GDB) [15] instance is started and attached to the
respective MPI process. The standard input and output of those debuggers are redi-
rected to network sockets, which in turn get forwarded to the local machine, where
g-Eclipse is running, using glogin’s traffic forwarding capabilities [14]. On the local
side, instead of creating real instances of GDB, the forwarded streams of the remote
debuggers are connected to the debugging functionality provided by the CDT. By
doing so the debug perspective of Eclipse acts as if it were using a local gdb to
debug the application. This circumvents the problems that would arise when using
the combination of gdb and gdbserver for remote debugging, like having a local gdb
matching the remote architecture and the need to have the shared libraries of the
remote machine available locally. Due to the fact that we use the input and output
of the remote debuggers, there is no need for a local GDB at all.

The most important fact is, that instead of allowing to debug only one process,
we add every process of the MPI application to the application launch, thus allowing
to conveniently control the whole remote running MPI application from our local
machine. In addition to the launcher allowing to run and debug MPI applications
on the grid, two further launchers were created. One allows to run and debug nor-
mal C/C++ applications on the grid, while the other one is used for running and
debugging JAVA applications on the grid.

6 Trace Viewer

6.1 Visualization of Message Passing Programs

The Trace Viewer is a tool to visualise and analyse the communication of parallel
message passing programs. As mentioned in the related work section above, several
similar tools already exist. However many of these tools were developed some time

40 Christof Klausecker et al.

ago, thus relying on outdated GUI libraries, and some of them are only commer-
cially available. This made it virtually impossible to integrate one of these tools into
the Eclipse IDE. The integration, however, was one of our main objectives, in order
to provide one workspace incorporating all tools.

Moreover few of these trace visualisation tools were designed to be extensible,
especially not by using such a powerful concept like Eclipse’s OSGi5 based plug-
in architecture. This extensibility however was needed in order to add the desired
functionality and to allow to improve the Trace Viewers capabilities in the future.

Therefore a new component with attention to flexibility and extensibility is pro-
vided in g-Eclipse. This newly-created tool named Trace Viewer uses the Standard
Widget Toolkit (SWT)6 to draw the visualisations. The Trace Viewer is integrated
into g-Eclipse but can be used as a stand-alone Rich Client Platform (RCP)7 appli-
cation as well. After careful consideration and with future fields of application in
mind, four major points which need extensibility, were identified. To make use of
one of the extension points a new plug-in must implement well defined interfaces
which are provided within the basic Trace Viewer plug-in.

6.2 Trace Providers

The first extension point allows plug-ins to add trace providers which, as their name
suggests, provide trace data. This trace data in turn can be displayed using plug-ins
implementing the visualisation extension point.

An implementation of a trace provider must at least support logical clocks. Ad-
ditionally it may also support lamport as well as physical clocks, provided that the
data source offers such information.

A trace provides processes which can be queried by their process id. The pro-
cesses allow, depending on the implementation, to query events according to their
logical, lamport or physical clocks. An event can be of one of the four basic sup-
ported types namely: “send”, “receive”, “test” and “other”. It is possible to provide
information beyond the provided interfaces, that gets displayed in the properties
view (Fig. 2) or can be used for trace format specific plug-ins.

Currently trace readers for two different trace formats are implemented. Both of
these readers provide events with logical, physical and lamport clock information.
The first reader allows to open the NOPE [6] trace format and is already in a mature
state. The latter one adds preliminary support for the Open Trace Format (OTF) [8].

5 http://www.osgi.org/
6 http://www.eclipse.org/swt/
7 http://www.eclipse.org/rcp/

http://www.osgi.org/
http://www.eclipse.org/swt/
http://www.eclipse.org/rcp/

Debugging with g-Eclipse 41

Fig. 2 Properties view show-
ing detailed information about
an selected event

6.3 Visualisations

The visualisation extension point allows visualisations to be added to the Trace
Viewer. As already mentioned visualisations take care of displaying information
made available by a trace provider. There are already three implementations which
make use of this extension point. The first one (Fig. 3) visualises the trace data ac-

Fig. 3 Trace viewer showing a trace using lamport clocks

cording to the events’ lamport clocks. The second visualisation (Fig. 4) uses the
physical timestamps of the events. The last visualisation called “statistics visuali-
sation” (Fig. 5) is just a proof of concept, which was developed to demonstrate the
flexibility of this tool. It makes use of the Business Intelligence and Reporting Tools
(BIRT)8, which is also an Eclipse project, and its Chart Engine. Currently this vi-
sualisation just displays some statistical information, like the relation between the
time spent with communication and the time spent doing actual calculation.

8 http://www.eclipse.org/birt/

http://www.eclipse.org/birt/

42 Christof Klausecker et al.

Fig. 4 Trace viewer showing a trace using physical clocks

Fig. 5 Example visualisation plug-in showing statistical information about the trace

This can be done for all processes cumulatively using a pie chart, or for each
process individually using a stacked bar chart, where each process is represented by
a separate bar.

6.4 Actions

The actions extension point allows to register entries to a popup menu. This menu
is displayed on right click on an event in the trace viewer and allows to perform
actions on the selected event. It can be very useful to connect the trace viewer to
other Eclipse components. Current implementations include a goto-source action
and a breakpoint action. Both of these actions make use of the source file and source
line information contained in events, provided for example by the NOPE trace file
format. The goto-source action is relatively simple, on activation it searches the
workspace for the appropriate source file, opens a source editor and jumps to the
respective source line. The breakpoint action allows to visually set breakpoints on
events in the graph. Since the source level debugger doesn’t know the concept of
events, the breakpoint action is more complex, because it has to deal with loops in
the source code leading to multiple events per source line.

Debugging with g-Eclipse 43

6.5 Markers

Another extension point allows to register so called markers. A marker can be used
to alter the appearance of an event by changing its colour or shape. This functionality
can be practical for different use cases. Tasks where it has already proven its viabil-
ity are for example the nope-, cause-effect- and debug-marker. The NOPE Marker
was developed, because the Trace Viewer only distinguishes between four different
event types. However the NOPE trace format stores additional information about
the specific MPI event type. This so called sub type information allows for example
to distinguish between a MPI_Send and a MPI_Isend event. While without the
NOPE Marker all events of one of the four types would look alike in the graphical
representation, enabling it allows to give different sub types different appearances.

Fig. 6 Marker showing the cause-effect relationships of the events

The “cause effect” marker (Fig. 6) shows the relationships between a selected
event and the other events in the trace by comparing their vector clocks. It marks
events that affect the selected event, events that get affected by the selected event
and independent events with different colours.

Fig. 7 Marker showing breakpoints on the events

The third provided marker is the breakpoint marker (Fig. 7). This marker allows
to display the breakpoints created using the breakpoint action in the graph.

44 Christof Klausecker et al.

7 Conclusions and Future Work

The current version of g-Eclipse is already used in a series of grid projects. At
this point in time, we are gathering experiences from the user to improve the func-
tionality even further. For example, to provide an insight into the communication
structures, especially of large traces, we are working on different pattern matching
techniques. We introduce an algorithm to extract repeating communication patterns
from MPI traces automatically to provide an easy and high-level understanding of
the parallel application’s communication behaviour. This would not only provide
a high-level, abstract understanding of the behaviour of parallel applications, but
would also support more directed performance optimization [12]. In addition, pat-
terns also provide the possibility to quickly spot errors in the communication struc-
ture of an application, for example by revealing breaks in pattern sequences (Fig. 8)
or by showing a mismatch between the actually recorded patterns and an applica-
tion’s intended structure. The main challenge is to efficiently detect such patterns
from MPI event traces of long running and/or large scale applications. We imple-
ment the pattern search as a two step process: first we find locally repeating se-
quences on each process using a suffix tree algorithm and then match these local
repeats with other sequences on other processes to generate global communication
patterns.

Fig. 8 Pattern matching plug-in that searches and marks repeating communication structures

References

1. Allcock, W.: GridFTP: Protocol Extensions to FTP for the Grid. Grid Final Document 20
(2003)

2. Friese, T., Smith, M., Freisleben, B.: GDT: A Toolkit for Grid Service Development. In Proc.
of the 3rd International Conference on Grid Service Engineering and Management, 131–148
(2006)

Debugging with g-Eclipse 45

3. Grabner, S., Kranzlmüller D., Volkert, J.: Debugging parallel programs using ATEMPT. In
HPCN Europe 95: Proceedings of the International Conference and Exhibition on High-
Performance Computing and Networking, 235–240, Springer, London (1995)

4. Hood, R., Jost, G.: Debugger for Computational Grid Applications. HCW ’00: Proceedings of
the 9th Heterogeneous Computing Workshop, 262, Washington DC (2000)

5. Kranzlmüller, D., Scarpa, M., Volkert, J.: DeWiz - A Modular tool Architecture for Parallel
Program Analysis. In Euro-Par, 74–80 (2003)

6. Kranzlmüller, D., Volkert, J.: Nope: A Nondeterministic Program Evaluator. In ParNum 99:
Proceedings of the 4th International ACPC Conference, 490–499, Springer, London (1999)

7. Kurniawan, D., Abramson, D.: Worqbench: An Integrated Framework for e-Science Applica-
tion Development. In E-SCIENCE 06: Proceedings of the Second IEEE International Confer-
ence on e-Science and Grid Computing, 51, IEEE Computer Society, Washington (2006)

8. Malony, A.D., Nagel, W.E.: The open trace format (OTF) and open tracing for HPC. In SC
06: Proceedings of the 2006 ACM/IEEE conference on Supercomputing, 24, ACM, New York
(2006)

9. Nagel, E., Arnold, A., Weber, M., Hoppe, H.C., Solchenbach, K.: VAMPIR: Visualization and
Analysis of MPI Resources. Supercomputer, 12(1), 69–80, (1996)

10. Neophytou, N., Evripidou, P.: Net-dbx: A Java Powered Tool for Interactive Debugging of
MPI Programs Across the Internet. In European Conference on Parallel Processing, 181–189
(1998)

11. Neophytou, P., Neophytou, N., Evripidou, P.: Net-dbx-G: a Web-based debugger of MPI pro-
grams over Grid environments. In CCGRID 04: Proceedings of the 2004 IEEE International
Symposium on Cluster Computing and the Grid, 35–42, IEEE Computer Society, Washington
(2004)

12. Preissl, R., Schulz, M., Kranzlmüller, D., Supinski, B.R., Quinlan, D.J.: Using MPI Commu-
nication Patterns to Guide Source Code Transformations, Tools for Program Development and
Analysis in Computational Science (2008)

13. Rosmanith, H., Kranzlmuller, D.: glogin - A Multifunctional, Interactive Tunnel into the Grid.
(2004) doi: 10.1109/GRID.2004.33

14. Rosmanith, H., Volkert, J.: Traffic Forwarding with GSH/GLOGIN. In PDP 05: Proceedings
of the 13th Euromicro Conference on Parallel, Distributed and Network-Based Processing
(PDP05), 213–219, IEEE Computer Society, Washington (2005)

15. Stallman, R., Pesch, R., Shebs, S., et al.: Debugging with GDB. Free Software Foundation,
9th edition (2006) isbn: 1882114884

16. Wolniewicz, P., Meyer, N., Stroinski, M., Stuempert, M., Kornmayer, H., Polak, M., Gjer-
mundrod, H.: Accessing Grid computing resources with g-Eclipse platform. In Computational
Methods in Science and Technology, number 2 (2007)

17. Zaki, O., Lusk, E., Gropp, W., Swider, D.: Toward Scalable Performance Visualization with
Jumpshot. High Performance Computing Applications, 13(2), 277–288 (1999)

II
Parallel Communication and Debugging

Enhanced Memory debugging of MPI-parallel
Applications in Open MPI

Shiqing Fan, Rainer Keller, and Michael Resch

Abstract In this paper, we describe the implementation of memory checking func-
tionality based on instrumentation using Valgrind-Memcheck tool. The com-
bination of Valgrind based checking functions within the MPI-implementation
offers superior debugging functionalities, for errors that otherwise are not possible
to detect with comparable MPI-debugging tools. The functionality is integrated into
Open MPI as the so-called memchecker-framework. This allows other memory
debuggers that offer a similar API to be integrated. The tight control of the user’s
memory passed to Open MPI, allows not only to find application errors, but also
helps track bugs within Open MPI itself. We describe the actual checks, classes of
errors being found, how memory buffers internally are being handled, show errors
actually found in user’s code and the performance implications of this instrumenta-
tion.

1 Introduction

Parallel programming with the distributed memory paradigm using the Message
Passing Interface MPI [4] is often considered as an error-prone process. Great effort
has been put into parallelizing libraries and applications using MPI. However when
it comes to maintaining the software, optimizing for new hardware or even porting
the code to other platforms and other MPI implementations, the developers will face
additional difficulties [1]. They may experience errors due to hard-to-track timing
critical bugs, deadlocks due to communication characteristics, MPI-implementation
defined or even hardware dependent behavior. One class of bugs, that are hard-to-
track are memory errors, specifically in non-blocking and one-sided communica-
tion.

Höchstleistungsrechenzentrum Stuttgart (HLRS), Nobelstrasse 19, 70550 Stuttgart, Germany, e-
mail: {fan,keller,resch}@hlrs.de

49

{fan, keller, resch}@hlrs.de

50 Shiqing Fan, Rainer Keller, and Michael Resch

In this paper, we introduce a debugging feature based on instrumentation func-
tionalities offered by Memcheck [6] tool of Valgrind-tool suite [6], that is being
employed within the Open MPI-library. The user’s parameters, as well as other non-
conforming MPI-usage and hard-to-track errors, such as accessing buffers of active
non-blocking operations are being checked and reported. This kind of functionali-
ties would otherwise not be detectable within traditional MPI-debuggers based on
the PMPI-interface.

The structure of this paper is as follows: section 2 shows the basic idea and
functionalities of Memcheck; section 3 gives an introduction to the design and
implementation in both non-blocking and one-sided communication of Open MPI;
in section 4, we show the performance implications of these two scenario; then in
section 5 we present the real work, i.e. the errors, that are being detected and have
been detected so far; finally, in section 6, we make a comparison with other available
tools and concludes the paper with an outlook of the future work.

2 Overview of Memcheck

The tool suite Valgrind [6] may be employed on static and dynamic binary ex-
ecutables on x86/x86-64 and /PowerPC32/64-compatible architectures. It op-
erates by intercepting the execution of the application on the binary level and inter-
prets the instructions. With this instrumentation, Valgrind tools then may deduce
information, and perform checks of different methodologies.

The system core of Valgrind provides a synthetic CPU. When the application
starts, Valgrind will “trap” the real CPU, and run the machine code on its syn-
thetic CPU, meanwhile, the debugging information is read from the executable and
associated libraries. This instrumentation for the Valgrind-parser uses processor
instructions that do not otherwise change the semantics of the application. By this
special instruction preamble, Valgrind detects commands to steer the instrumen-
tation. On the x86-architecture, the right-rotation instruction ror is used to rotate
the 32-bit register edi, by 3, 13, 29 and 19, aka 64-Bits, leaving the same value in
edi; the actual command to be executed is then encoded with an register-exchange
instruction (xchgl) that replaces a register with itself (in this case ebx):

#define __SPECIAL_INSTRUCTION_PREAMBLE \
"roll $3, %%edi ; roll $13, %%edi\n\t" \
"roll $29, %%edi ; roll $19, %%edi\n\t" \
"xchgl %%ebx, %%ebx\n\t"

Memcheck, a heavyweight memory checker in the Valgrind-tool suite, is
well known for its tracking of memory definedness down to the bit level, which
guarantees the partial defined bytes are also correctly dealt with. It stores two kinds
of shadow memory values, for addressability and definedness, Memcheck shadows
each byte in memory with the information presenting that whether the byte has
been allocated (so-called A-Bits) and for each bit of the byte, whether it contains a

x86
x86-64
PowerPC32/64

Enhanced Memory debugging of MPI-parallel Applications in Open MPI 51

defined value (so-called V-Bits). With this AV-bit pair implementation, Memcheck
is able to provide bit-precision checks of program errors as they run. It tracks the
addressability of every byte of memory and the definedness of every bit of data in
registers and memory, so that it can detect accesses to unaddressable memory errors
and use of undefined value errors, such as buffer overruns and faulty access to stack.
In total, every byte of memory is shadowed with 9 bits values (one A bit plus eight
V bits). Memcheck also tracks all heap blocks allocated with malloc(), new and
new[] to detect bad or repeated frees of heap blocks and memory leaks. Arguments
to functions like strcpy() and memcpy(), are also checked for overlaps.

However, the disadvantage of using Memcheck is the slowdown of running ap-
plications, which is caused by adding code to check every memory access and every
value computed. The size of the code is increased at least 12 times normally, and it
runs 25-50 times slower than natively.

In this paper, we will describe the implementation of integrating Memcheck as
a component of Open MPI, which helps MPI application and Open MPI develop-
ers track the wrongly use of memory, such as reading or writing to buffers of ac-
tive, non-blocking Recv-operations and writing to buffers of active, one-sided Get-
operations, as well as checking definedness of Open MPI-internal data structures,
such as requests, communicators and datatype information.

3 Design and Implementation

In order to find MPI-related hard-to-track bugs in the application (and within Open
MPI for that matter), we have taken advantage of an instrumentation-API offered
by Memcheck. To allow other kinds of memory-debuggers, such as bcheck or
Totalview’s memory debugging features [8], we have implemented the functionality
as a module into Open MPI’s Modular Component Architecture [10]. The module
is therefore called memchecker and may be enabled with the configure-option
--enable-memchecker.

This may detect memory access bugs, such as buffer overruns and more, but also
by knowledge of the semantics of calls like strncpy. However, Valgrind does
not have any knowledge of the semantics of MPI-calls. Also, due to the way, how
Valgrind is working, errors due to undefined data may be reported late, way down
in the call stack. The original source of error in the application therefore may not be
obvious.

3.1 Non-blocking Communication

In Open MPI objects such as communicators, types and requests are declared as
pointers to structures. These objects when passed to MPI-calls are being immedi-
ately checked for definedness and together with MPI_Status are checked upon

52 Shiqing Fan, Rainer Keller, and Michael Resch

exit1. Memory being passed to Send-operations is being checked for accessibility
and definedness, while pointers in Recv-operations are checked for accessibility,
only.

Reading or writing to buffers of active, non-blocking Recv-operations and writ-
ing to buffers of active, non-blocking Send-operations are obvious bugs. Buffers
being passed to non-blocking operations (after the above checking) is being set to
undefined within the MPI-layer of Open MPI until the corresponding completion
operation is issued. This setting of the visibility is being set independent of non-
blocking MPI_Isend or MPI_Irecv function. When the application touches the
corresponding part in memory before the completion with MPI_Wait, MPI_Test
or multiple completion calls, an error message will be issued. In order to allow the
lower-level MPI-functionality to send the user-buffer as fragment, the lower-layer
BTLs (Byte Transfer Layers) are adapted to set the fragment in question to acces-
sible and defined, as may be seen in Fig. 1. Care has been taken to handle derived
datatypes and it’s implications.

MPI_Isend

MPI_Wait
MPI_Wait

MPI_Irecv

Proc1

Undefined
&

Proc0

Inaccessible

Frag

Frag

0

1

Inaccessible

Undefined
& *

Fragn
BTL

Application

MPI

PML

Buffer

Fig. 1 Fragment handling to set accessibility and definedness, non-blocking communication

For Send-operations, the MPI-1 standard also defines, that the application may
not access the send-buffer at all (see [4], p. 30). Many applications do not obey this
strict policy, domain-decomposition based applications that communicate ghost-
cells, still read from the send-buffer. To the authors’ knowledge, no existing imple-
mentation requires this policy, therefore the setting to undefined on the Send-side is
only done when strict-checking is enabled (see Undefined� in Fig. 1).

3.2 One-sided Communication

For one-sided communications, MPI-2 standard defines that, any conflicting ac-
cesses to the same memory location in a window are erroneous (see [5], p. 112).
If a location is updated by a put or a accumulate operation, then this location can-
not be accessed by a load or another RMA operation until the updating operation
is completed on the target. If a location is fetched by a get operation, this location

1 E. g. this showed up uninitialized data in derived objects, e. g. communicators created using
MPI_Comm_dup

Enhanced Memory debugging of MPI-parallel Applications in Open MPI 53

cannot be accessed by other operations as well. When a synchronization call starts,
the local communication buffer of an RMA call and a get call should not be updated
until it is finished. User buffer of MPI_Put or MPI_Accumulate, for instance,
are set not accessible when these operations are initiated, until the completion oper-
ation finished (see Fig. 2). Valgrind will produce an error message, if there is any
read or write to the memory area of the user buffer before corresponding completion
operation terminates.

In Open MPI, there are two One-sided communication modules, point-to-point
and RDMA. Similar checks has been implemented for MPI_Get, MPI_Put, MPI_
Fence and MPI_Accumulate in point-to-point module.

Proc1

Undefined
&

Frag

Frag

0

1

Inaccessible

Undefined
&

MPI_Fence
MPI_Fence

Proc0

Inaccessible
MPI_Acc

Proc1

Undefined
&

Proc0

Inaccessible

Frag

Frag

0

1

Inaccessible

Undefined
&

MPI_Put

MPI_Fence
MPI_Fence

Fig. 2 Fragment handling to set accessibility and definedness, one-sided communication

4 Performance Implications

Adding instrumentation to the code does induce a slight performance hit due to
the assembler instructions as explained above, even when the application is not run
under Valgrind.

Tests have been done for both non-blocking communication and one-sided com-
munication with several benchmarks, all of which were run on the DGrid-cluster at
HLRS. This machine consists of dual-processor Intel Woodcrest, using Infiniband-
DDR network with the OpenFabrics stack.

4.1 Non-blocking communication performance

For IMB, two nodes were used to test in following cases: compilation with&without
--enable-memchecker and with --enable-memchecker but disabled
MPI-object checking (see Fig. 3) and with&without Valgrind was run (see
Fig. 4). We include the performance results on two nodes using the PingPong test. In
Fig. 3 the measured latencies (left) and bandwidth (right) using Infiniband (not run-
ning with Valgrind) shows the costs incurred by the additional instrumentation,
ranging from 18 to 25% when the MPI-object checking is enabled as well, and 3-
6% when memchecker is enabled, but no MPI-object checking is performed. As one
may note, while latency is sensitive to the instrumentation added, for larger packet-

54 Shiqing Fan, Rainer Keller, and Michael Resch

sizes, it is hardly noticeable anymore (less than 1% overhead). Figure 4 shows the
cost when additionally running with Valgrind, again without further instrumen-
tation compared with our additional instrumentation applied, here using TCP con-
nections employing the IPoverIB-interface.

The large slowdown of the MPI-object checking is due to the tests of every argu-
ment and its components, i. e. the internal data structures of an MPI_Comm consist
of checking the definedness of 58 components, checking an MPI_Request in-
volves 24 components, while checking MPI_Datatype depends on the number of
the base types.

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 0 50 100 150 200 250

T
im

e
[u

se
c]

Message Length [Byte]

Intel MPI Benchmark - Time in usec

compiled w/o instrumentation
compiled w/ instrumentation

compiled w/ instrumentation - no MPI-object checking

 0

 200

 400

 600

 800

 1000

 1200

 0 2 4 6 8 10 12 14 16

B
an

dw
id

th
 [M

B
/s

]

Message Length [Byte]

Intel MPI Benchmark - Bandwidth

compiled w/o instrumentation
compiled w/ instrumentation

compiled w/ instrumentation - no MPI-object checking

Fig. 3 Latencies and bandwidth with&without memchecker-instrumentation over IB, running
without valgrind

 240

 250

 260

 270

 280

 290

 300

 310

 320

 330

 340

 350

 0 50 100 150 200 250

T
im

e
[u

se
c]

Message Length [Byte]

Intel MPI Benchmark - Time in usec

compiled w/o instrumentation
compiled w/ instrumentation

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 2 4 6 8 10 12 14 16

B
an

dw
id

th
 [M

B
/s

]

Message Length [Byte]

Intel MPI Benchmark - Bandwidth

compiled w/o instrumentation
compiled w/ instrumentation

Fig. 4 Latencies and bandwidth with&without memchecker-instrumentation using IPoverIB, run-
ning with valgrind

The BT-Benchmark has several classes, which have different complexity, and
data size. The algorithm of BT-Benchmark solves three sets of uncoupled systems
of equations, first in the x, then in the y, and finally in the z direction. The tests are
done with sizes Class A and Class B. Figure 5 shows the time in seconds for the BT
Benchmark. The Class A (size of 64x64x64) and Class B (size of 102x102x102)
test was run with the standard parameters (200 iterations, time-step dt of 0.0008).

Enhanced Memory debugging of MPI-parallel Applications in Open MPI 55

Again, we tested Open MPI in the following three cases: Open MPI without
memchecker component, running under Valgrind with the memchecker compo-
nent disabled and finally with --enable-memchecker.

 0

 50

 100

 150

 200

 250

 300

Class A, 4 Class A, 9 Class B, 4 Class B, 9

NAS Parallel Benchmarks 2.3 -- BT Benchmark, Time in seconds

plain
memchecker/No MPI object checking

memchecker/MPI objects

 1000

 1500

 2000

 2500

 3000

 3500

 4000

Class A, 9 Class B, 9

NAS Parallel Benchmarks 2.3 -- BT Benchmark, Time in seconds

plain with valgrind
memchecker/no MPI-object checking with valgrind

Fig. 5 Time of the NPB/BT benchmark for different classes running without (left) and with (right)
valgrind

As may be seen and is expected this benchmark does not show any performance
implications whether the instrumentation is added or not. Of course due to the large
memory requirements, the execution shows the expected slow-down when running
under Valgrind, as every memory access is being checked.

4.2 One-sided communication performance

For one-sided communication, we used NetPIPE and Intel MPI Benchmark both on
two nodes of DGrid-cluster at HLRS, and MPI-object checking is disabled for all
tests in this case, as it will result the same large slowdown as we explained in section
4.1.

In IMB benchmark bi-directional put and get are used, both in aggregate mode,
i.e. both tests will run with varying transfer sizes in bytes which is issued by the cor-
responding one sided communication call, and timings will be averaged over mul-
tiple samples. The bi-directional benchmarks are exact equivalents of the message
passing PingPing. All tests were run in following cases, with/without memchecker
implementation, and run with/without Valgrind.

Figure 6 presents the average time of running bi-directional get and put tests
with and without the memchecker implementation running without Valgrind.
The performance of MPI_Get (see left side of Fig. 6) in these cases is nearly iden-
tical, and the one with memchecker implementation is losing only 1% of run time.
For MPI_Put (see right side of Fig. 6), we got similar result as MPI_Get. How-
ever, notably, MPI_Put has a better performance than MPI_Get in general. There
are several factors affecting the performance of MPI_Put transfer, for example the
choice of window location and the shape and location of the origin and target buffer.
Transfers to a target window in memory allocated by MPI_ALLOC_MEM may be

56 Shiqing Fan, Rainer Keller, and Michael Resch

much faster on shared memory systems; transfers from contiguous buffers will be
faster on most systems; the alignment of the communication buffers may also impact
performance, see [5] p. 114.

 318

 319

 320

 321

 322

 323

 324

 325

 326

 0 200 400 600 800 1000

T
im

e
[u

se
c]

Message Length [Byte]

Intel MPI Benchmark - Time in usec

compiled w/o instrumentation
compiled w/ instrumentation

 159.5

 160

 160.5

 161

 161.5

 162

 162.5

 163

 163.5

 164

 0 200 400 600 800 1000

T
im

e
[u

se
c]

Message Length [Byte]

Intel MPI Benchmark - Time in usec

compiled w/o instrumentation
compiled w/ instrumentation

Fig. 6 Time for bi-directional get(left) and put(right), running without valgrind

On the other hand, the performance is dropping down a lot when running with
Valgrind, as shown in Fig. 7, the results of the same test but running with
Valgrind. In this case, the additional cost of the memchecker instrumentation
(less than 1% of run time) is almost negligible.

 4300

 4350

 4400

 4450

 4500

 4550

 0 200 400 600 800 1000

T
im

e
[u

se
c]

Message Length [Byte]

Intel MPI Benchmark - Time in usec

compiled w/o instrumentation
compiled w/ instrumentation

 2140

 2160

 2180

 2200

 2220

 2240

 2260

 2280

 2300

 0 200 400 600 800 1000

T
im

e
[u

se
c]

Message Length [Byte]

Intel MPI Benchmark - Time in usec

compiled w/o instrumentation
compiled w/ instrumentation

Fig. 7 Time for bi-directional get(left) and put(right), running with valgrind

NetPIPE is a protocol independent performance tool that presents the network
performance under a variety of conditions. It performs PingPong tests between two
processes with increasing message size through different protocols and MPI imple-
mentations. The message sizes are chosen at regular intervals with slight perturba-
tions. Each data point involves many ping-pong tests to get a accurate timing value.
Here it was modified for testing the performance of Open MPI. Namely the variables
of window and address pointers were adapted, all of which are not performance rel-
evant.

The performance of MPI_Get and MPI_Put is shown in Fig. 8 and Fig. 9
separately, running without Valgrind, each of the figures presents the run time

Enhanced Memory debugging of MPI-parallel Applications in Open MPI 57

and bandwidth of executing the application. As seen from the figures, the application
got 3%-5% performance loss, when memchecker is enabled.

 9.5

 10

 10.5

 11

 11.5

 12

 12.5

 13

 13.5

 14

 14.5

 0 200 400 600 800 1000

T
im

e
[u

se
c]

Message Size [Byte]

NetPIPE - Time in usec

compiled w/o implementation
compiled w/ implementation

 0

 10

 20

 30

 40

 50

 60

 0 200 400 600 800 1000

B
an

dw
id

th
 [M

B
/s

]

Message Size [Byte]

NetPIPE - Bandwidth

compiled w/o implementation
compiled w/ implementation

Fig. 8 Time and bandwidth, one-sided get, running without valgrind

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 11

 11.5

 0 200 400 600 800 1000

T
im

e
[u

se
c]

Message Size [Byte]

NetPIPE - Time in usec

compiled w/o implementation
compiled w/ implementation

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 200 400 600 800 1000

B
an

dw
id

th
 [M

B
/s

]

Message Size [Byte]

NetPIPE - Bandwidth

compiled w/o implementation
compiled w/ implementation

Fig. 9 Time and bandwidth, one-sided put, running without valgrind

5 Detectable error classes and findings in actual applications

The kind of errors, detectable with a memory debugging tool such as Valgrind
in conjunction with instrumentation of the MPI-implementation are:

• Wrong input parameters, e. g. wrongly sized send buffers:

char * send_buffer;
send_buffer = malloc (5);
memset(send_buffer, 0, 5);
MPI_Send(send_buffer, 10, MPI_CHAR, 1, 0, \

MPI_COMM_WORLD);

58 Shiqing Fan, Rainer Keller, and Michael Resch

• Uninitialized input buffers:

char * buffer;
buffer = malloc (10);
MPI_Send(buffer, 10, MPI_INT, 1, 0, \

MPI_COMM_WORLD);

• Usage of the uninitialized MPI_ERROR-field of MPI_Status2:

MPI_Wait(&request, &status);
if(status.MPI_ERROR != MPI_SUCCESS)

return ERROR;

• Writing into the buffer of active non-blocking Send or Recv-operation or persis-
tent communication:

int buf = 0;
MPI_Request req;
MPI_Status status;
MPI_Irecv(&buf, 1, MPI_INT, 1, 0, \

MPI_COMM_WORLD, &req);
/* Will produce a warning */
buf = 4711;
MPI_Wait(&req, &status);

• Read from the buffer of active non-blocking Send-operation in strict-mode:

int inner_value = 0, shadow = 0;
MPI_Request req;
MPI_Status status;
MPI_Isend(&shadow, 1, MPI_INT, 1, 0, \

MPI_COMM_WORLD, &req);
/* Will produce a warning */
inner_value += shadow;
MPI_Wait(&req, &status);

• Read from the buffer of active accumulate operation:

MPI_Win_create(NULL, 0, 1, MPI_INFO_NULL, \
MPI_COMM_WORLD, &win);

MPI_Win_fence (0, win);
MPI_Accumulate(A, NROWS*NCOLS, MPI_INT, 1, 0, 1, \

xpose, MPI_SUM, win);

2 The MPI-1 standard declares the MPI_ERROR-field to be undefined for single-completion calls
such as MPI_Wait or MPI_Test (p. 22).

Enhanced Memory debugging of MPI-parallel Applications in Open MPI 59

/* Will produce a warning */
printf("\n%d\n",A[0][0]);
MPI_Win_fence(0, win);

• Write to the buffer of active get operation:

MPI_Win_create(NULL, 0, 1, MPI_INFO_NULL, \
MPI_COMM_WORLD, &win);

MPI_Win_fence(0, win);
MPI_Get(A, NROWS*NCOLS, MPI_INT, 1, 0, 1, \

xpose, win);
/* Will produce a warning */
A[1][0] = 4711;
MPI_Win_fence(0, win);

• Uninitialized values, e. g. MPI-objects from within Open MPI.

During the course of development, several software packages have been tested
with the memchecker functionality. Among them problems showed up in Open MPI
itself (failed in initialization of fields of the status copied to user-space), an MPI
testsuite [2], where tests for the MPI_ERROR triggered an error. In order to re-
duce the number of false positives Infiniband-networks, the ibverbs-library of
the OFED-stack [7] was extended with instrumentation for buffer passed back from
kernel-space.

6 Conclusion and future work

We have presented an implementation of memory debugging features into Open
MPI, using the instrumentation of the Valgrind-suite, and the performance impli-
cation of using the instrumentation with several benchmarks. This allows detection
of hard-to-find bugs in MPI-parallel applications, libraries and Open MPI itself [1].
This is new work, up to now, no other debugger is able to find these kind of errors.

The future work will be mainly focused on capturing and restoring the memory
states in Open MPI, i.e. capturing and restoring the AV-bit pairs from Valgrind.
This is necessary for setting the accessibility of the user buffer more precisely and
for preventing overwriting the states of the memory location. For instance, a snap-
shot of the user buffer states is captured and stored when non-blocking operation
starts, then the buffer set to be not accessible, which will allow Valgrind to detect
the memory access. When send operation is finished, the snapshot will be restored
back to the corresponding memory location, so that the states of the user buffer
remains unchanged.

With regard to related work, debuggers such as Umpire [9], Marmot [3] or the
Intel Trace Analyzer and Collector [1], actually any other debugger based on the

60 Shiqing Fan, Rainer Keller, and Michael Resch

Profiling Interface of MPI, may detect bugs regarding non-standard access to buffers
used in active, non-blocking communication without hiding false positives of the
MPI-library itself.

Acknowledgements This work was funded by project Int.EU.Grid (Interactive EUropean Grid)
with EU-Contract Number 031857, by project DORII (Deployment of Remote Instrumentation In-
frastructure) with EU-Contract Number 213110 and by Microsoft Technical Computing Initiative
(TCI) since March 2007.

We would like to thank Julian Seward and the open source community for Valgrind, which
has proven invaluable in many software projects.

References

1. DeSouza, J., Kuhn, B., de Supinski, B.R.: Automated, scalable debugging of MPI programs
with Intel message checker. In: Proceedings of the 2nd International Workshop on Software
engineering for high performance computing system applications, vol. 4, pp. 78–82. ACM
Press, NY, USA (2005)

2. Keller, R., Resch, M.: Testing the correctness of MPI implementations. In: Proceedings of the
5th Int. Symp. on Parallel and Distributed Computing conference, pp. 291 – 295. Timisoara,
Romania (2006)

3. Krammer, B., Müller, M.S., Resch, M.M.: Runtime checking of MPI applications with Mar-
mot. In: PARCO’05. Malaga, Spain (2005)

4. Message Passing Interface Forum: MPI: A Message Passing Interface Standard (1995).
http://www.mpi-forum.org

5. Message Passing Interface Forum: MPI-2: Extensions to the Message-Passing Interface
(1997). http://www.mpi-forum.org

6. Seward, J., Nethercote, N.: Using Valgrind to detect undefined value errors with bit-precision.
In: Proceedings of the USENIX’05 Annual Technical Conference. Anaheim, CA, USA (2005)

7. The Open Fabrics project webpage. WWW (2007). https://www.openfabrics.org
8. Totalview Memory Debugging capabilities. WWW. http://www.etnus.com/

TotalView/Memory.html
9. Vetter, J.S., de Supinski, B.R.: Dynamic software testing of MPI applications with Um-

pire. In: Proceedings of Supercomputing (SC) (2000). http://www.sc2000.org/
proceedings/techpapr/index.htm

10. Woodall, T., Graham, R., Castain, R., Daniel, D., Sukalski, M., Fagg, G., Gabriel, E., Bosilca,
G., Angskun, T., Dongarra, J., Squyres, J., Sahay, V., Kambadur, P., Barrett, B., Lumsdaine,
A.: Open MPI’s TEG Point-to-Point Communications Methodology: Comparison to Exist-
ing Implementations. In: Recent Advances in Parallel Virtual Machine and Message Passing
Interface, vol. 3241, pp. 105–111. Springer, Budapest, Hungary (2004)

http://www.mpi-forum.org
http://www.mpi-forum.org
https://www.openfabrics.org
http://www.etnus.com/TotalView/Memory.html
http://www.etnus.com/TotalView/Memory.html
http://www.sc2000.org/proceedings/techpapr/index.htm
http://www.sc2000.org/proceedings/techpapr/index.htm

MPI Correctness Checking with Marmot

Bettina Krammer, Tobias Hilbrich, Valentin Himmler, Blasius Czink, Kiril Dichev,
and Matthias S. Müller

Abstract Parallel programming is a complex, and since the multi-core era has
dawned, also a more and more common task that can be alleviated considerably
by tools supporting the application development and porting process. The Message
Passing Interface (MPI) is widely used to write parallel programs using message
passing, but it does not guarantee portability between different MPI implementa-
tions. When an application runs without any problems on one platform but crashes
or gives wrong results on another platform, developers tend to blame the compil-
er/architecture/MPI implementation. In many cases the problem is a subtle program-
ming error in the application undetected on the platforms used previously. Finding
this bug can be a very strenuous and difficult task. In this paper we present the Mar-
mot tool, an automated correctness checker for MPI applications during runtime.
Examples of violations of the MPI standard are the introduction of irreproducibil-
ity, deadlocks, incorrect management of resources such as communicators, groups,
datatypes etc. or the use of non-portable constructs. To cover different aspects of
correctness debugging in a user-friendly environment, also in hybrid applications
using both MPI and OpenMP, we also work on coupling Marmot with a parallel
debugger (DDT) or a threading tool (Intel® Thread Checker). Some examples of
experiences with real-world applications are given.

Bettina Krammer, Valentin Himmler, Blasius Czink, Kiril Dichev
High Performance Computing Center Stuttgart (HLRS), Universität Stuttgart, Nobelstrasse 19,
70569 Stuttgart, Germany, e-mail: {krammer,himmler,czink,dichev}@hlrs.de

Tobias Hilbrich, Matthias S. Müller
TU Dresden, Center for Information Services and High Performance Computing (ZIH), 01062
Dresden, Germany, e-mail: {Tobias.Hilbrich@zih.tu-dresden.de,matthias.
mueller@tu-dresden.de}

61

mailto:krammer@hlrs.de
mailto:himmler@hlrs.de
mailto:czink@hlrs.de
mailto:dichev@hlrs.de
mailto:Tobias.Hilbrich@zih.tu-dresden.de
mailto:matthias.mueller@tu-dresden.de
mailto:matthias.mueller@tu-dresden.de

62 Krammer, Hilbrich, Himmler, Czink, Dichev, Müller

1 Introduction

The Message Passing Interface (MPI) has been a commonly used standard [1, 2] for
writing parallel programs for more than a decade, at least within the High Perfor-
mance Computing (HPC) community. With the arrival of multi-core processors, par-
allel programming paradigms such as MPI or OpenMP will become more popular
among a wider public in many application domains as software needs to be adapted
and parallelised to exploit fully the processor’s performance. However, tracking
down a bug in a distributed program can turn into a very painful task, especially
if one has to deal with a huge and hardly comprehensible piece of legacy code. The
main difficulties are:

1. Developers do not only have to face all the problems that occur in serial pro-
gramming. In addition, parallel applications get more and more complex and
especially with the introduction of optimisations like the use of non-blocking
communication also more error prone.

2. MPI programs do not always behave deterministically. Deadlocks or race condi-
tions may appear, depending on the platform environment or on the MPI imple-
mentation. What is worse, they may only appear sometimes or only when running
on a very high number of processes. Thus, it may take users or developers quite
a long time until they even realise that the program gives wrong results, but only
sometimes. Unfortunately, it may be impossible to reproduce these errors, and
the errors may never occur in the presence of a debugging tool as any sort of
surveillance slightly changes the program behaviour (so-called Heisenbugs).

3. The MPI standard leaves many decisions to the implementation, e.g. whether or
not a standard communication is blocking or how to implement so-called opaque
objects. This implementation-defined behaviour may cause problems when port-
ing an application from one platform to another.

In the following sections, we first give a short overview on related work (Sect. 2)
and describe the design of Marmot as well as possible checks for MPI and hybrid
programs (Sect. 3) and collaboration with other tools (Sect. 4). Finally, we present
some experiences with real-world applications (Sect. 5) and give a very short user-
guide (Sect. 6) and some concluding remarks and an outlook to work planned in
future (Sect. 7).

2 Related Work

Finding bugs in a complex parallel application is quite a painful task. Fortunately
there are powerful tools for the different aspects of debugging, e.g. tools for memory
checking or for correctness checking. Apart from the classical way of debugging –
printf statements – the different solutions are roughly grouped into four differ-
ent approaches: classical debuggers, special MPI libraries and other tools that may
perform a runtime or post-mortem analysis.

MPI Correctness Checking with Marmot 63

1. The freely available debugger gdb [19], which is also used with its graphical
front-end ddd [20], has currently no support for MPI, but it can be attached to one
or several, possibly already running MPI processes. The same can be done with
special memory-checking debuggers, e.g. Valgrind [22, 23]. More convenient
are parallel debuggers, which are based on serial debuggers such as gdb. They
provide the usual interactive functionality of debuggers, such as single-stepping,
breakpointing, evaluating variables, etc., but additionally allow the user to mon-
itor and act on groups of processes in a single debugging session. Examples are
the well-known commercial debuggers Totalview [17] or DDT [16]. These de-
buggers can also be used for a post-mortem analysis of core files.

2. The second approach is to provide a special debug version of the MPI library
(e.g. MPIch or NEC-MPI). This version is not only used to catch internal errors
in the MPI library, but also to detect some incorrect usage of MPI by the user,
e.g. a type mismatch of sending and receiving messages or mismatched collective
operations [4, 5, 6].

3. Another possibility is to develop tools dedicated to finding problems within MPI
applications at runtime. At present, four known different message-checking tools
are under more or less active development. MPI-CHECK [8] is currently re-
stricted to Fortran code and performs argument type checking or finds problems
like deadlocks [8]. Similar to Marmot [9, 10], Umpire [3] uses the profiling in-
terface. The newest kid on the block is the MPI correctness checker library that
is integrated in the Intel® Trace Analyzer and Collector [26]. It is based on the
previous Intel® Message Checker (IMC) [25], which was at that time an example
of the fourth approuch.

4. The fourth approach is to perform a post-mortem analysis by collecting all in-
formation on MPI calls in a trace file. After program execution, this trace file is
analysed by a separate tool or compared with the results from previous runs [7].
This approach is also used by many tools with respect to performance analysis,
and indeed, in some cases it can be very enlightening to “abuse” a performance
tool for debugging.

As no tool is an all-in-one device suitable for every purpose, a combination of
different tools will probably aid the developers most. While a memory-checking de-
bugger may be able to diagnose that an application crashes due to an uninitialized
variable, it will definitely not help much in finding incorrect usage of the MPI inter-
face as Marmot does. Therefore, we also aim at collaborating with other tools, see
Sect. 4. Regardless, not every error can be caught by tools.

3 Design of Marmot

Marmot [10, 11, 12] is a library that uses the so-called PMPI profiling interface
to intercept MPI calls and analyse them during runtime. It has to be linked to the
application in addition to the underlying MPI implementation, not requiring any
modification of the application’s source code nor of the MPI library. The tool checks

64 Krammer, Hilbrich, Himmler, Czink, Dichev, Müller

if the MPI API is used correctly and checks for errors frequently made in MPI
applications, e.g. deadlocks, the correct construction and destruction of resources,
etc. It also issues warnings for non-portable behaviour, e.g. using tags outside the
range guaranteed by the MPI standard.

Application

MARMOT

Native
MPI

(Debug
Server)

Additional
Process

Client Side Server Side

Core Tool

Profiling
Interface

Fig. 1 Design of Marmot

Figure 1 illustrates the design of Marmot. Local checks including verification
of arguments such as tags, communicators, ranks, etc. are performed on the client
side. An additional MPI process (referred to as debug server) is added for the tasks
that cannot be handled within the context of a single MPI process, e.g. deadlock
detection. Another task of the debug server is the logging and the control of the ex-
ecution flow. Every client has to register at the debug server, which gives its clients
the permission for execution in a round-robin way. Information is transferred be-
tween the original MPI processes and the debug server using MPI. The disadvan-
tage of this server/client architecture is that it inflicts a bottleneck, thus affecting
the scalability and performance of the tool, especially for communication-intensive
applications [12].

In order to ensure that the debug server process is transparent to the application,
we map MPI COMM WORLD to a Marmot communicator that contains only the appli-
cation processes. Since all other communicators are derived from MPI COMM WORLD
they will also automatically exclude the debug server process. This mapping is done
at start-up time in the MPI Init call, where we also map all other predefined MPI
resources, such as groups or datatypes, to our own Marmot resources. When an
application constructs or destructs resources during run-time, e.g. by creating or
freeing a user-defined communicator, the Marmot maps are updated accordingly.
Having its own book-keeping of MPI resources, independently of the actual MPI
implementation, Marmot can thus verify correct handling of resources.

The output of Marmot is available in different formats, e.g. as text log file or
html/xml file, which can be displayed and analysed using a web browser or graphical
interface. An excerpt from Marmot’s HTML output is depicted in Fig. 2.

Marmot is intended to be a portable tool that has been tested on many different
platforms and with many different MPI implementations, for instance Linux Clus-
ters with IA32/IA64/EM64T processors, Cray, Hitachi, IBM Regatta and NEC SX

MPI Correctness Checking with Marmot 65

Fig. 2 Excerpt from Marmot’s HTML output

systems, using different compilers (GNU, Intel, PGI,etc.) and different MPI imple-
mentations (MPIch, Open MPI, LAM/MPI, vendor MPIs, etc.). Functionality and
performance tests are performed with test suites, microbenchmarks and real appli-
cations [11, 12].

Marmot supports the complete MPI-1.2 standard for C and Fortran applications
and is being extended to also cover MPI-2 functionality.

3.1 Possible Checks for MPI Applications

Parallel programming is a complex challenge. It offers enough pitfalls that MPI can
imaginably stand for “Maddening Programming Interface”. Among the Top Ten
common programming errors are:

• Deadlocks: Marmot contains a mechanism to automatically detect deadlocks
and notify the user where and why they have occurred. In general, deadlocks
are caused by the non-occurrence of something else, for example mismatched
send/receive operations or mismatched collective calls. One can distinguish be-
tween real deadlocks, which occur inevitably, and potential deadlocks, which
may occur only under certain circumstances, e.g. depending on data races or on
the implementation, for instance, if a standard send is implemented as a buffered
send or not. In this code snippet process 0 and process 1 exchange messages
between each other.

if (rank == 0) {

66 Krammer, Hilbrich, Himmler, Czink, Dichev, Müller

// send to 1 and receive from 1
MPI_Send(...);
MPI_Recv(...);

} else if (rank == 1) {
// send to 0 and receive from 0
MPI_Send(...);
MPI_Recv(...);

}

If the MPI Send is implemented in buffered mode, for example for small mes-
sage sizes, this code will not deadlock, otherwise it will. Currently Marmot’s
deadlock detection is based on a timeout mechanism and therefore finds all real
deadlocks. Marmot’s debug server surveys the time each process is waiting in an
MPI call. If this time exceeds a certain user-defined limit on all processes at the
same time, the debug process issues a deadlock warning. The user is then able
to trace the last few calls on each node. It is also possible that attaching Marmot
(or any other tool) to an application slightly changes the execution flow in such
a way that a potential deadlock becomes apparent.

• Data races: Potential race conditions can be caused by various reasons, e.g. by
the use of a receive call with the wildcard MPI ANY SOURCE as source argument
or the wildcard MPI ANY TAG as tag argument, by the use of random numbers,
or by the fact that nodes do not behave exactly the same. Some users also rely on
collective calls being synchronising, however, the only synchronising collective
call is the MPI Barrier. Other collective calls can be synchronising or not,
depending on their implementation. For example, assume that any of the send
calls on the processes 1 and 2 match to any of the receive calls on process 0.

if (rank == 0) {
MPI_Recv(..., MPI_ANY_SOURCE, MPI_ANY_TAG,...);
MPI_Bcast(....);
MPI_Recv(..., MPI_ANY_SOURCE, MPI_ANY_TAG,...);

} else if (rank == 1) {
MPI_Send(...);
MPI_Bcast(...);

} else if (rank == 2){
MPI_Bcast(...);
MPI_Send(...);

}

If the MPI Bcast is synchronising process 0 will have to receive the message
from process 1 first. If it is not then the message order will not be deterministic:
either the message from process 1 or from process 2 can be received first. At
present, Marmot indicates the use of wildcards, but it does not construct depen-
dency graphs to view the different possible executions nor does it use methods
like record and replay to identify and track down bugs in parallel programs [7] or
to compare different runs. Why does one need a tool to detect this sort of argu-
ment as a simple grep command on the source code would give the same result?

MPI Correctness Checking with Marmot 67

Actually, a search command does neither show the execution flow nor will it be
able to detect this argument if the application takes functions from some other
library with hidden MPI calls.

• Mismatches: Mismatches in arguments of one call can be detected locally
and are sometimes even detected by the compiler. Examples are wrong type
or number of arguments. Mismatches are also seen in arguments involving
more than one call, e.g. in send/receive pairs or in collective calls. Special
attention is needed when comparing matched pairs of derived datatypes be-
cause it is legal to send, for example two (MPI INT, MPI DOUBLE) and to
receive one (MPI INT, MPI DOUBLE, MPI INT, MPI DOUBLE), or to send
one (MPI INT, MPI DOUBLE) and to receive one (MPI INT, MPI DOUBLE,
MPI INT, MPI DOUBLE) (a so-called partial receive). MPI implementations
usually abort an application when there is a datatype mismatch, e.g. send an
MPI INT and receive an MPI DOUBLE, but no exact diagnosis of the mismatch
is given.

• Resource handling: This is an area in MPI where incorrect usage may result in
fatal errors with almost no obvious link to the real cause. Since they are very dif-
ficult to find, we place special focus into detecting them. Marmot is able to keep
track of the proper construction, usage and destruction of all MPI resources, such
as communicators, groups, datatypes, etc. As these resources are “opaque” ob-
jects and therefore implementation-dependent, Marmot has its own book-keeping
of these resources and, thus, duplicates the management done by the underlying
MPI library. Marmot also checks if requests and other arguments (tags, ranks,
etc.) are used correctly, e.g. if an active requests is reused. The main function-
ality is implemented for the C language binding, whereas the functionality for
the Fortran language binding is obtained through a wrapper to the C interface.
Special attention is paid to the verification of the datatypes because they are one
of the major differences between the C and the Fortran language binding.

• Memory and other resource exhaustion: Non-blocking calls such as MPI -
Isend etc. can complete without issuing a matching test or wait call. However,
the number of available request handles is limited (and implementation defined).
Therefore requests should always be freed, as should allocated communicators,
datatypes, etc. Marmot gives a warning when a request is reused, and also when
there are active or non-freed requests left at the MPI Finalize. Another issue
is reusing memory that is still in use, for example by reading/writing from/into
a buffer by an unfinished send/receive operation. Marmot does currently not per-
form any checks if a buffer can be reused safely because the transmission of data
has completed. This kind of check is a subtle task that requires some insight into
an MPI implementation: what is really going on when calling e.g. MPI Issend
or MPI Irecv, how does that depend on the message size, etc.? In some cases,
Marmot checks if buffers are overwritten by mistake, e.g. for MPI Gatherv
and similar collective calls, it is verified if on the root process data is overridden
due to an erroneous array of displacements.

• Portability: The MPI standard leaves many decisions to the implementors, for
example how to implement opaque objects and handles to these objects, if to

68 Krammer, Hilbrich, Himmler, Czink, Dichev, Müller

implement MPI Send as buffered call or not, if to implement collective calls as
synchronising calls, if to make the implementation thread-safe or not, etc. Some
of these issues can already be detected at compile time when the application is
ported to another environment, some can be found at runtime by Marmot, e.g.
using a tag beyond the guaranteed limit.

Marmot supports the complete MPI-1.2 standard, although not all possible tests
(such as consistency checks) are implemented yet. It can be used with any standard-
conforming MPI implementation and may thus be deployed on any development
platform available to the programmer. Although high-quality MPI implementations
detect some of these errors themselves, there are many cases where they do not
give any warnings. For example, non-portable implementation-specific behaviour
is not indicated by the implementation itself, nor are checks performed that would
decrease the performance too much, such as consistency checks. What is worse,
MPI implementations tolerate quite a few errors without warnings or crashing, by
simply giving wrong results.

3.2 Possible Checks for Hybrid Applications

As HPC systems tend to use steadily increasing amounts of computing cores, it is
necessary to provide strategies to utilize these systems. For some systems it is gain-
ful to use MPI and multi-threading at the same time. So called “hybrid” applications
follow this strategy and usually use one MPI process per computing node and one
thread for each computing core of a node. This also increases the complexity of ap-
plications and introduces new MPI usage errors. In order to support development of
such applications it is possible to use Marmot for hybrid OpenMP/MPI applications.

The existence of threads has consequences as it is possible to call the MPI in
parallel, by using multiple threads. The MPI-2 standard restricts the multi threaded
usage by introducing four different usage levels:

MPI THREAD SINGLE: only one thread exists
MPI THREAD FUNNELED: multiple threads may exist but only the main thread

(i.e. the thread that initialized MPI) performs MPI
calls

MPI THREAD SERIALIZED: multiple threads exist and each thread may perform
MPI calls as long as no other thread is calling MPI

MPI THREAD MULTIPLE: multiple threads may call MPI simultaneously

These levels are referred to as “thread levels”. Each MPI application may specify a
required thread level, but an MPI implementation may return a lower level instead.
In addition to the specification of the thread levels there are further restrictions in
the MPI standard. An example of such a restriction is the usage of communicators in
collective calls, namely communicators must not be used simultaneously in multiple
collective calls of one process.

MPI Correctness Checking with Marmot 69

In order to use Marmot in hybrid applications it is necessary to synchronize it to
avoid unprotected parallel data access within Marmot. This is done by using com-
mands of the used multi threading paradigm. Currently only OpenMP is supported
but implementations for other paradigms are feasible. So in addition to the normal
checks for MPI usage it is necessary to check for the following usage faults:

• Conformance to the provided thread level: The thread level provided by the
MPI implementation must not be violated. In order to check this it is necessary
to observe which threads are calling MPI and whether it is possible that multiple
threads call MPI simultaneously on one process. Marmot does this at runtime and
detects violations to the provided thread level if they actually occur in a run. In
addition, an application should require the lowest sufficient thread level. In order
to aid developers in selecting this lowest level Marmot calculates the minimal
required thread level at runtime.

• Correct usage of shared memory: Applications that use the highest thread level
may call MPI in parallel. Many MPI calls assume that memory passed to MPI is
owned by it for a certain amount of time. Such memory must not be touched as
long as the memory is owned by MPI. When multiple threads execute MPI calls
in parallel this restriction is easily violated. Such an example is shown below.

#pragma omp parallel
{

MPI_Recv(my_buf,...)
}

In this example the shared variable “my buf” is passed to MPI multiple times.
These errors are currently not detected by Marmot. In order to detect all instances
of these problems it is necessary to detect every access to memory owned by MPI.
This might be achieved by an own implementation or by using existing tools like
Valgrind [24]. In order to detect a subset of these errors it is possible to check
whether memory passed to MPI is already owned by MPI due to a preceding call.

• Conformance to special restrictions: The MPI standard documents mention
several special restrictions for multi-threaded usage. Restrictions refer to vari-
ous parts of the interface: examples are initializing and finalizing MPI, usage of
communicators in collective calls, usage of requests and message probing. For
the above mentioned restriction stating that each communicator must not be used
in multiple collective calls simultaneously, we want to present a simple example:

#pragma omp parallel
{

MPI_Barrier(MPI_COMM_WORLD)
}

This code snippet violates the restriction for the communicatorMPI COMM WORLD.
It is necessary to create special checks for each restriction which is currently
done for all identified MPI-1 restrictions. These checks detect violations if they
actually occur in a run made with Marmot.

70 Krammer, Hilbrich, Himmler, Czink, Dichev, Müller

4 Collaboration with other tools

4.1 Marmot and CUBE

By default, Marmot prints its errors, warnings and remarks into a human-readable
text file. Another option is HTML logging which results in an HTML file that can
be viewed with a standard browser. However, both of these output formats result in
a chronological list of events. To provide also an hierarchical view of the messages,
Marmot can make use of the CUBE library included in the KOJAK (Scalasca resp.)
toolset [14, 15]. In this case, the output is written to an XML file which can then be
viewed with KOJAK’s visualizer CUBE. An example of Marmot’s log file in XML
format visualized with CUBE is depicted in Fig. 3. One can see that the CUBE

Fig. 3 Visualisation with CUBE (display detail)

visualizer presents Marmot’s messages in a hierarchical tree view. Infos, warnings,
notes and errors are not displayed in chronological order but are grouped, so that a
user can easily identify e.g. only errors. This visualizer provides an intuitive way of
browsing through the Marmot messages. An improved version (CUBE3) is about to
be released and will also be supported by Marmot.

MPI Correctness Checking with Marmot 71

4.2 Marmot and DDT

Until now, Marmot has generally been used as a standalone tool. This is about
to change with the integration into the Distributed Debugging Tool (DDT) from
Allinea [16]. DDT is a source level debugger for C, C++ and Fortran. It sup-
ports practically all implementations of MPI, OpenMP and combinations thereof
(MPI/OpenMP hybrid). DDT provides a convenient graphical user interface that
meets the demands of parallel debugging. To combine the strength of the debugger
with Marmot’s ability of runtime MPI correctness checking, a plugin for DDT is un-
der development [13]. The user will then be able to activate or deactivate Marmot on
a per run basis. Furthermore, DDT’s graphical user interface will be used to provide
for a user friendly configuration of the Marmot plugin, e.g. settings concerning Mar-
mot’s log level (Info, Warning, Error) can then be modified using an intuitive GUI,
instead of modifying the respective environment variables via command line. DDT
will also, on the one hand, take care of starting a run with Marmot with an additional
process for the debug server and, on the other hand, hide this process from the user
to allow for a consistent way of working with the debugger. DDT’s graphical user
interface will also be used to display Marmot’s messages. This is especially useful
as messages with different severity may be displayed in different panes and a user’s
click on such a message will jump to the appropriate line in the source code. One
can also make DDT pause the program in case Marmot detects an error. This way,
the user can step through the program using both the debugger and the correctness
checker at the same time.

4.3 Marmot and Intel® Thread Checker

Some of the additional checks presented in Sect. 3.2 that are used for hybrid appli-
cations will only detect errors if they actually appear in a run made with Marmot.
For some applications this might be a problem as the probability of an error to occur
might be very low. As an simplified example we present the following code snippet:

#pragma omp parallel private(thread)
{

#pragma omp sections
{

#pragma omp section
{ MPI_Barrier(MPI_COMM_WORLD); }
#pragma omp section
{ sleep(5);

MPI_Barrier(MPI_COMM_WORLD); }
}

}

72 Krammer, Hilbrich, Himmler, Czink, Dichev, Müller

This example violates the collective communicator restriction of the MPI standard
for some very improbable runs. Thus detecting this error with Marmot is almost
impossible, as usual runs will not contain the error.

In order to improve detection of these errors it is possible to use Marmot in
combination with Intel® Thread Checker [27]. Additional code executed in Marmot
makes the Thread Checker aware of violations to MPI restrictions. This is achieved
by creating artificial data races that only occur if such a restriction is violated. The
output of the Thread Checker contains data race errors if a restriction is violated.

4.4 Marmot and Visual Studio on Windows

The Windows Version of Marmot was tested and works well with MPIch2 and
MSMPI (contained in the Compute Cluster Pack). MSMPI is based on the reference
MPIch2 implementation and differs mainly in job launch and management due to
security considerations made in Windows Compute Cluster Server. Although there
are precompiled versions of Marmot for the two MPI implementations a user might
still be forced to recompile it. Compiling for the specific version of the MPI im-
plementation and runtime used is highly recommended. In order to configure/build
Marmot the cmake tool [21] is needed. On Windows it is imperative to avoid mix-
ing debug and release builds of libraries. Therefore a ‘D’ suffix is added to the
debug builds of the Marmot libraries. Users could manually adjust their existing
Visual Studio projects and link to the Marmot libraries or simply use an example
CMakeLists.txt file from the Marmot repository and adjust that to their needs.

Since it can be quite tedious to lookup errors and warnings in log-files an AddIn
was developed to better integrate Marmot into Visual Studio. The AddIn launches
the application selected as ‘Startup Project’ in Visual Studio and communicates with
the Debug-Server built into Marmot (see Fig. 1). The Marmot output is displayed
similarly to compile warnings and errors in the Output pane of Visual Studio (see
Fig. 4).

5 Experiences with real Applications

Marmot has been used with synthetic test programs but also with a number of real-
world applications and benchmarks.

5.1 Bloodflow Simulation

There are many examples of errors that are tolerated by MPI implementations or
that only occur on specific platforms, or occur under specific circumstances. When

MPI Correctness Checking with Marmot 73

Fig. 4 Marmot Visual Studio AddIn

analysing the development version of a medical application that uses a 3D Lattice-
Boltzmann method for blood flow calculation, we find different problems in the
code. In many places the developers equate MPI Comm with int. This is a danger-
ous thing to do because, in MPIch, the opaque object MPI Comm is actually defined
as an int and therefore the code works without a problem. However, in LAM/MPI,
MPI Comm is defined as a pointer to a struct and therefore it breaks on any plat-
form where a pointer does not fit into an integer.

When we test this application with different input files representing the geometry
of the artery we find other problems. In the simplest case, a mere tube with an ap-
proximately constant radius, the code runs without any problems. When calculating
the blood flow for an artery stenosis, i.e. using a tube with varying radius, the ap-
plication stalls and Marmot finds a deadlock caused by process 0, which performs
an MPI Sendrecv whereas all other processes perform an MPI Bcast. A very
simplified skeleton of the source code shows why:

main {
...
//compute number of iterations depending on the radius
if (radius < x) num_iter = y; else num_iter = z;

for (i=0; i < num_iter; i++)
{

74 Krammer, Hilbrich, Himmler, Czink, Dichev, Müller

// compute blood flow and exchange results
// with neighbours using MPI_Sendrecv
computeBloodflow(...);

}

// communicate results using MPI_Bcast
writeResults(...);

}

Every process calculates its own number of iterations depending on the radius, but
unfortunately, they do not communicate to agree on a maximum number of itera-
tions. As a result, process 0 tries to perform more iterations having a piece of the
artery with a bigger radius than the others, and therefore tries to exchange results
with its neighbour using the MPI Sendrecv whereas the others already have fin-
ished their iterations and try to communicate with the MPI Bcast. This shows how
important it is to choose relevant input data sets for an effective runtime checking.
It also shows how difficult it is for developers to keep track of all the MPI commu-
nication when it is hidden in subroutines.

Another input file representing a forked artery reveals yet another programming
error. In this case, every process results in different values for the send/receive
counts in the collective call MPI Gather. On some platforms the application runs
without a problem, but on some platforms the different values cause a segmentation
violation. Strangely enough, on one platform the application runs without a prob-
lem, but when attaching a performance analysis tool to it, it crashes. It appears to be
the fault of the tool, but in reality there is a bug in the application. Antithetically, it
is possible that bugs never occur in the presence of tools (so-called).

5.2 SPEC MPI2007 Benchmarks

SPEC MPI2007 [34] is a suite of applications used to evaluate performance of par-
allel computing systems. A discussion on one of the SPEC MPI2007 mailinglists
led to the assumption that there was a bug in one of the benchmarks. The discussion
started as invalid results with a certain MPI implementation appeared. Members of
the mailing list identified the existence of multiple uncompleted MPI Irecv calls
that used the same receive buffer. According to the MPI standard this is erroneous.

We used Marmot to confirm the existence of the problem and to validate the
correctness of possible solutions. A first run with Marmot resulted in a segmentation
fault. At first we assumed that there was an error in Marmot but eventually we found
out that there was a second bug in the application. The second error resulted from a
MPI Irecv call which is drafted below.

call MPI_IRECV(buf, size, type, &
source, tag, comm, &
request, status, error)

MPI Correctness Checking with Marmot 75

This call contains the superfluous argument status. Detecting this usually is a com-
piler task but, due to the usage of Fortran77, this was not possible. When using
Marmot additional arguments are appended to the MPI calls and, due to the super-
fluous parameter, this led to the segmentation fault.

After fixing this error we were able to execute the application with Marmot. The
logfiles confirmed the existence of uncompleted MPI Irecv calls that use the same
receive buffers. Such a situation arises when executing code like:

MPI_Irecv(buf, ...);
MPI_Irecv(buf, ...);

Three different solutions were proposed to solve this error. Marmot confirmed
that two of the solutions solved the problem. The third solution corrected the prob-
lem by ensuring that only one of the MPI IRecv calls is satisfied at a time. With
this solution Marmot still detected that memory owned by MPI is used in another
MPI call. When interpreting the MPI standard strictly this is still a usage error of the
MPI, however, as common MPI implementations will only touch the buffer when
the receive is satisfied this will not cause any actual errors.

5.3 Spin Glass application

Marmot is integrated in the Interactive European Grid infrastructure [31].
The Spin Glass application [32, 33] is a physics application that is used to exam-

ine the effects of temperature changes on the physical characteristics of spin glass
- mainly on magnetization. The Spin Glass application uses MPI communication
with both collectives and point-to-point communication. There was a phase in the
development of the application when the program was hanging. Marmot delivered a
hint for wrong data types being used in the MPI communication. The developer had
a look into the log file to examine the order in which the calls were made. Although
the log did not identify the problem, the list of MPI calls helped him to trace the
error as a race condition. The code was then corrected.

The tests done by project members resulted in some very valuable feedback for
the developers. Improvements need to be done in the deadlock detection mechanism,
as sometimes the high latency and low bandwidth of a cluster of workstations result
in increased pending times for communication.

6 How to install and use Marmot

For the readers who are interested in using Marmot themselves we give a very short
description of how to install and use it. A download version and installation instruc-
tions can be found on Marmot’s website [9]. Once the installation is done the usage
of Marmot is quite easy. Two steps have to be performed: First, compilation of the

76 Krammer, Hilbrich, Himmler, Czink, Dichev, Müller

application and linking it against the Marmot libraries. Second, running the program
with an additional process (needed for Marmot’s debug server). For the first step,
an installation of Marmot provides compiler wrappers (marmotcc, marmotcxx and
marmotf77) which do the necessary linking. Suppose the user wants to run SomeApp
with Marmot attached and originally uses 3 processes. Then one would typically is-
sue the commands

marmotcc -o SomeApp SomeApp.c
mpirun -np 4 ./SomeApp

After the run a file named Marmot SomeApp [TIMESTAMP].txt can be found in the
working directory. This file contains Marmot’s output. If the user wants to view the
results in a browser the logging format can be switched to HTML by modifying the
environment variable Marmot LOGFILE TYPE:

export Marmot_LOGFILE_TYPE=1

An excerpt of such an HTML file is depicted in Fig. 2. An overview on Marmot’s
environment variables can be found in the userguide or in the log file’s header.

7 Conclusion and Future Work

In this paper we have presented the Marmot MPI correctness checker, which anal-
yses the behaviour of an MPI application during runtime and checks for errors fre-
quently made in the use of the MPI API. The functionality of this tool has been
tested successfully with real world applications.

Future work includes technical improvements, e.g. a better deadlock detection
mechanism or full support for the MPI-2 standard. Another aspect is to improve
the performance and scalabality of the tool, especially for communication-intensive
applications. We also aim at constantly improving user-friendliness, e.g. by adapting
CUBE visualisation better to the needs of Marmot’s correctness checking messages.

Acknowledgements The research presented in this paper has partially been supported by the Fed-
eral Ministry of Research and Education (BMBF) through the ITEA2-06015 project “ParMA” [30]
(June 2007 – May 2010), by the Virtual Institute - High Productivity Supercomputing (VI-HPS),
which is funded by the Helmholtz Association under Grant No. VH-VI-228, by the European
Union through the IST-031857 project “int.eu.grid” (May 2006 – April 2008) and by Microsoft.

References

1. Message Passing Interface Forum. MPI: A Message Passing Interface Standard, June 1995.
http://www.mpi-forum.org/.

2. Message Passing Interface Forum. MPI-2: Extensions to the Message Passing Interface, July
1997. http://www.mpi-forum.org/.

http://www.mpi-forum.org/
http://www.mpi-forum.org/

MPI Correctness Checking with Marmot 77

3. Jeffrey S. Vetter and Bronis R. de Supinski. Dynamic Software Testing of MPI Applications
with Umpire. In Proceedings of the 2000 ACM/IEEE Supercomputing Conference (SC 2000),
Dallas, Texas, 2000.

4. William D. Gropp. Runtime Checking Of Datatype Signatures In MPI. In Recent Advances
In Parallel Virtual Machine And Message Passing. 7th European PVM/MPI Users’ Group
Meeting. LNCS 1908, pages 160-167. Springer 2000.

5. Chris Falzone, Anthony Chan, Ewing Lusk and William Gropp. Collective Error Detection
for MPI Collective Operations. In Recent Advances In Parallel Virtual Machine And Mes-
sage Passing. 12th European PVM/MPI Users’ Group Meeting. LNCS 3666, pages 138-147.
Springer 2005.

6. J.L. Träff and J. Worringen. Verifying Collective MPI Calls. In Recent Advances In Paral-
lel Virtual Machine And Message Passing. 11th European PVM/MPI Users’ Group Meeting.
LNCS 3241, pages 18 - 27, Springer, 2004.

7. Dieter Kranzlmüller. Event Graph Analysis For Debugging Massively Parallel Programs. Phd
thesis, Joh. Kepler University Linz, Austria, 2000.

8. Glenn Luecke, Yan Zou, James Coyle, Jim Hoekstra and Marina Kraeva. Deadlock Detection
In MPI Programs. In Concurrency and Computation: Practice and Experience. 2002, vol. 14,
pages 911 - 932.

9. Marmot. http://www.hlrs.de/organization/amt/projects/marmot
10. Bettina Krammer, Matthias S. Müller and Michael M. Resch. MPI I/O Analysis and Error

Detection with Marmot. In Recent Advances In Parallel Virtual Machine And Message Pass-
ing. 11th European PVM/MPI Users’ Group Meeting. LNCS 3241, pages 242 - 250, Springer,
2004.

11. Bettina Krammer, Katrin Bidmon, Matthias S. Müller, and Michael M. Resch. Marmot: An
MPI analysis and checking tool. In Proceedings of PARCO 2003, pages 493-500, Elsevier,
2004.

12. Bettina Krammer, Matthias S. Müller and Michael M. Resch. MPI Application Development
Using the Analysis Tool Marmot, In Proceedings of ICCS 2004, LNCS 3038, pages 464 - 471,
Springer 2004.

13. Bettina Krammer, Valentin Himmler, David Lecomber. Coupling DDT and Marmot for De-
bugging of MPI Applications. In Proc. of ParCo 2007, Jülich/Aachen, Germany, September
4-7, 2007. NIC Series, Vol. 38, pp. 653-660

14. KOJAK. Kit for Objective Judgement and Knowledge-based Detection of Performance Bot-
tlenecks http://www.fz-juelich.de/jsc/kojak/

15. Markus Geimer, Felix Wolf, Brian J. N. Wylie, and Bernd Mohr. Scalable Parallel Trace-
Based Performance Analysis. In Proceedings of the 13th European Parallel Virtual Machine
and Message Passing Interface Conference, LNCS 4192, pages 303 - 312, Springer 2006.

16. DDT. The Distributed Debugging Tool.
http://www.allinea.com/?page=48

17. Totalview. http://www.totalviewtech.com/productsTV.htm
18. mpigdb.

http://www-unix.mcs.anl.gov/mpi/MPICH/docs/userguide/-
node26.htm#Node29

19. The GNU Project Debugger. http://www.gnu.org/manual/gdb
20. The Data Display Debugger. http://www.gnu.org/software/ddd/
21. The Cross-Platform Makefile Generator http://www.cmake.org
22. Brett Carson and Ian A. Mason. ClusterGrind: Valgrinding LAM/MPI Applications. In Recent

Advances In Parallel Virtual Machine And Message Passing. 12th European PVM/MPI Users’
Group Meeting. LNCS 3666, pages 325-332. Springer 2005.

23. Rainer Keller, Shiqing Fan and Michael Resch. Memory debugging of MPI-parallel Applica-
tions in Open MPI. In Proceedings of ParCo’07, G.R. Joubert et al. (eds), Juelich, Germany,
September, 2007.

24. Julian Seward and Nicholas Nethercote. Using valgrind to detect undefined value errors with
bit-precision. In ATEC ’05: Proceedings of the annual conference on USENIX Annual Tech-
nical Conference, Berkeley, CA, USA, USENIX Association (2005), 2–2.

http://www.hlrs.de/organization/amt/projects/marmot
http://www.fz-juelich.de/jsc/kojak/
http://www.allinea.com/?page=48
http://www.totalviewtech.com/productsTV.htm
http://www-unix.mcs.anl.gov/mpi/MPICH/docs/userguide/node26.htm#Node29
http://www-unix.mcs.anl.gov/mpi/MPICH/docs/userguide/node26.htm#Node29
http://www.gnu.org/manual/gdb
http://www.gnu.org/software/ddd/
http://www.cmake.org

78 Krammer, Hilbrich, Himmler, Czink, Dichev, Müller

25. Jayant DeSouza, Bob Kuhn and Bronis R. de Supinski. Automated, scalable debugging
of MPI programs with Intel Message Checker. SE-HPCS ’05, St. Louis, Missouri, USA.
http://csdl.ics.hawaii.edu/se-hpcs/papers/11.pdf

26. Patrick Ohly and Werner Krotz-Vogel. Automated MPI Correctness Checking: What if
There Were a Magic Option? 8th LCI ’07, South Lake Tahoe, California, USA. May 2007.
http://softwarecommunity.intel.com/isn/Downloads/multicore/
Krotz-Vogel lci-hpcc-correctness.pdf

27. Sack, P., Bliss, B.E., Ma, Z., Petersen, P., Torrellas, J.: Accurate and efficient filtering for
the intel thread checker race detector. In: ASID ’06: Proceedings of the 1st workshop on
Architectural and system support for improving software dependability, New York, NY, USA,
ACM (2006) 34–41

28. A. Tirado-Ramos, H. Ragas, D. Shamonin, H. Rosmanith, and D. Kranzlmueller. Integration
of blood flow visualization on the grid: the flowfish/gvk approach. In 2nd European Across
Grids Conference, Nicosia, Cyprus, January 28-30 2004.

29. ParMA: Parallel Programming for Multi-core Architectures - ITEA2 Project (06015).
http://www.parma-itea2.org/

30. Bettina Krammer and Rainer Keller. The ParMA Project. inSiDE, Vol 5, No. 1, Spring 2007.
31. Interactive European Grid. http://www.interactive-grid.eu/
32. S. Jimenez, V. Martin-Mayor, S. Perez-Gaviro. Rejuvenation and Memory in model Spin

Glasses in 3 and 4 dimensions. Phys. Rev. B 72, 054417 (2005).
33. I. Campos, M. Cotallo-Aban, V. Martin-Mayor, S. Perez-Gaviro, A. Tarancon. Phys. Rev. Lett.

97, 217204 (2006).
34. M. S. Müller, M. van Waveren, R. Liebermann, B. Whitney, H. Saito, K. Kalyan, J. Baron,

B. Brantley, Ch. Parrott, T. Elken, H. Feng and C. Ponder SPEC MPI2007 - An Application
Benchmark for Clusters and HPC systems In Proceedings of ISC2007, Dresden, 2007.

http://csdl.ics.hawaii.edu/se-hpcs/papers/11.pdf
http://softwarecommunity.intel.com/isn/Downloads/multicore/Krotz-Vogel_lci-hpcc-correctness.pdf
http://softwarecommunity.intel.com/isn/Downloads/multicore/Krotz-Vogel_lci-hpcc-correctness.pdf
http://www.parma-itea2.org/
http://www.interactive-grid.eu/

Memory Debugging in Parallel and Distributed
Applications

Chris Gottbrath

Abstract Memory errors, such as memory leaks and bounds violations are often the
source of the kind of bugs that are especially challenging for scientists, computer
scientists and engineers to resolve. This paper describes a new software develop-
ment tool called MemoryScape that provides developers with a highly graphical
and interactive memory debugging tool. MemoryScape can be used to troubleshoot
problems on applications ranging from serial applications for the desktop or server
up to massively multprocess applications running on supercomputers. This paper
provides an introduction to some of the challenges of memory debugging in parallel
architectures, reviews the memory errors detected and provides an overview of the
Heap Interposition Agent (HIA) and parallel debugging technology that makes this
possible.

1 Introduction

Memory bugs, essentially a mistake in the management of heap memory, can oc-
cur in any program that is being written, enhanced, or maintained. A memory bug
can be caused by a number of factors, including failure to check for error con-
ditions; relying on non-standard behavior; memory leaks including failure to free
memory; dangling references such as failure to clear pointers; array bounds viola-
tions; and memory corruption such as writing to memory not owned / over running
array bounds. These can sometimes cause programs to crash or generate incorrect
“random” results, or more frustratingly, they may lurk in the code base for long
periods of time - only to manifest at the worst possible time.

Memory problems are difficult to track down with conventional tools on even
a simple desktop architecture, and are much more vexing when encountered on a

Chris Gottbrath
TotalView Technologies, 24 Prime Parkway, Natick, MA 01760, e-mail: Chris.Gottbrath@
totalviewtech.com

79

mailto:Chris.Gottbrath@totalviewtech.com
mailto:Chris.Gottbrath@totalviewtech.com

80 Chris Gottbrath

distributed parallel architecture. This paper will review the challenges of memory
debugging, with special attention paid to the challenges of parallel development and
parallel debugging, and introduce a tool that helps developers identify and resolve
memory bugs in parallel and distributed applications, highlight major features, and
discuss architectural choices so that users can understand benefits and drawbacks of
some of those choices.

2 The Challenges of Memory Debugging in Parallel Development

The fact that memory bugs can be introduced at any time makes memory debugging
a challenging task- especially in codes that are written collaboratively or that are
being maintained over a long period of time, where assumptions about memory
management can either change or not be communicated clearly. They can also lurk
in a code base for long periods of time since they are often not immediately fatal
and can suddenly become an issue when a program is ported to a new architecture,
scaled up to a larger problem size, or when code is adapted and reused from one
program to another.

Memory bugs often manifest themselves in several ways, either as a crash that
always happens, a crash that sometimes happens (instability), or just as incorrect
results. Furthermore, they are difficult to track down with commonly used devel-
opment tools and techniques, such as printf and traditional source code debuggers,
which are not specifically designed to solve memory problems.

Adding parallelism to the mix makes things even harder because parallel pro-
grams are often squeezed between two effects, meaning that these programs have to
be very careful with memory. Parallel programs are also written in situations where
the problem set is “large,” so the program naturally ends up loading a very signif-
icant amount of data and using a lot of memory. However, special purpose HPC
systems often have less memory per node than one might ideally desire, as memory
is expensive.

3 Classifying Memory Errors

Programs typically make use of several different categories of memory that are man-
aged in different ways. These include stack memory, heap memory, shared memory,
thread private memory and static or global memory. However, programmers are re-
quired to pay special attention to memory that is allocated out of the heap memory.
This is because the management of heap memory is done explicitly in the program
rather than implicitly at compile or run time.

There are a number of ways that a program can fail to make proper use of dynam-
ically allocated heap memory. It is useful to develop a simple categorization of these
mistakes for discussion; in this paper, they will be described in terms of the C mal-

Memory Debugging in Parallel and Distributed Applications 81

loc() API. However, it is important to note that analogous errors can also be made
with memory that is allocated using the C++ new statement and the FORTRAN 90
allocate statement.

3.1 Malloc Errors

Malloc errors occur when a program passes an invalid value to one of the operations
in the C Heap Manager API. This could potentially happen if the value of a pointer
(the address of a block) was copied into another pointer, and then at a later time, both
pointers were passed to free(). In this case, the second free() is incorrect because the
specified pointer does not correspond to an allocated block. The behavior of the
program after such an operation is undefined.

3.2 Dangling Pointers

A pointer can be said to be dangling when it references memory that has already
been deallocated. Any memory access, either a read or a write, through a dan-
gling pointer can lead to undefined behavior. Programs with dangling pointer bugs
may sometimes appear to function without any obvious errors, even for significant
amounts of time, if the memory that the dangling pointer points to happens not to
be recycled into a new allocation during the time that it is accessed.

3.3 Memory Bounds Violations

Individual memory allocations that are returned by malloc()represent discrete blocks
of memory with defined sizes. Any access to memory immediately before the lowest
address in the block or immediately after the highest address in the block results in
undefined behavior.

3.4 Read-Before-Write Errors

Reading memory before it has been initialized is a common error. Some languages
assign default values to uninitialized global memory, and many compilers can iden-
tify when local variables are read before being initialized. What is more difficult and
generally can only be done at random is detecting when memory accessed through
a pointer is read before being initialized. Dynamic memory is particularly affected,

82 Chris Gottbrath

since this is always accessed through a pointer, and in most cases, the content of
memory obtained from the memory manager is undefined.

4 Detecting Memory Leaks

Leaks occur when a program finishes using a block of memory, discards all refer-
ences to the block, but fails to call free()to release it back to the heap manager for
reuse. The result is that the program is neither able to make use of the memory nor
reallocate it for a new purpose.

The impact of leaks depends on the nature of the application. In some cases the
effects are very minor; in others, where the rate of leakage is high enough or the run-
time of the program is long enough, leaks can significantly change the memory be-
havior and the performance characteristics of the program. For long running appli-
cations or those where memory is limited, even a small leakage rate can have a very
serious cumulative and adverse effect. This somewhat paradoxically makes leaks
all that much more annoying – since they often linger in otherwise well-understood
codes. It can be quite challenging to manage dynamic memory in complex appli-
cations to ensure that allocations are released exactly once so that malloc and leak
errors do not occur.

Leak detection can be done at any point in program execution. As discussed,
leaks occur when the program ceases using a block of memory without calling free.
It is hard to define “ceasing to use” but an advanced memory debugger is able to
execute leak detection by looking to see if the program retains a reference to specific
memory locations.

5 The MemoryScape Debugger

The MemoryScape memory debugger is an easy-to-use tool for developers to get
started using. It has a lightweight architecture that requires no recompilation and
has modest impact on the runtime performance of the program. The interface is
designed around the concept of an inductive user interface, which guides the user
through the task of memory debugging and provides easy-to-understand graphical
displays, powerful analysis tools, and features to support collaboration (making it
easy to report a lurking memory bug to the library vendor, scientific collaborator, or
colleague who wrote the code in question).

MemoryScape is designed to be used with parallel and multiprocess target ap-
plications, providing both detailed information about individual processes, as well
as high level memory usage statistics across all of the processes that make up a
large parallel application. MemoryScape’s specialized features, including support
for launching and automatically attaching to all of the processes of a parallel job,
the ability to memory debug many processes from within one GUI and the ability to

Memory Debugging in Parallel and Distributed Applications 83

do script-based debugging to use batch queue environments, make it well-suited for
debugging these parallel and distributed applications.

6 MemoryScape Architecture

MemoryScape accomplishes memory debugging on parallel and distributed appli-
cations through the modified use of a technique called interposition. MemoryScape
provides a library, called the Heap Interposition Agent (HIA), that is inserted be-
tween the user’s application code and the malloc()subsystem. This library defines
functions for each of the memory allocation API functions. It is these functions that
are initially called by the program whenever it allocates, reallocates, or frees a block
of memory.

Fig. 1 MemoryScape Heap Interposition Agent (HIA) Architecture. The HIA sits between the
application and the memory allocation layer in glibc

The interposition technique used by MemoryScape was chosen in part because it
provides for lightweight memory debugging. Low overheads are an important fac-
tor if the performance of a program is not to suffer because of the presence of the
HIA. In most cases, the runtime performance of a program being debugged with the
HIA engaged will be similar to that where the HIA is absent. This is absolutely crit-
ical for high-performance computing applications, where a heavyweight approach
that significantly slowed the target program might very well make the runtime of
programs exceed the patience of developers, administrators and job schedulers.

Interposition differs from simply replacing the malloc() library with a debug mal-
loc in that the interposition library does not actually fulfill any of the operations itself
– it arranges for the program’s malloc() API function calls to be forwarded to the
underlying heap manager that would have been called in the absence of the HIA.
The effect of interposing with the HIA is that the program behaves in the same way
that it would without the HIA- except that the HIA is able to intercept all of the

84 Chris Gottbrath

memory calls and perform bookkeeping and “sanity checks” before and after the
underlying function is called.

The bookkeeping that the HIA library does builds up and maintains a record of
all of the active allocations on the heap as the program runs. For each allocation in
the heap, it records not just the position and size of the block, but also a full function
call stack representing what the program was doing when the block was allocated.
The “sanity checks” that the HIA performs are the kinds of things that allow the
HIA to detect malloc() errors such as freeing the same block of memory twice or
trying to reallocate a pointer that points to a stack address.

Depending on how it has been configured, the HIA can also detect whether some
bounds errors have occurred. The information that the HIA collects is used by the
MemoryScape memory debugger to provide the user with an accurate picture of the
state of the heap.

6.1 MemoryScape Parallel Architecture

MemoryScape uses a behind-the-scenes, distributed parallel architecture to man-
age runtime interaction with the user’s parallel program. MemoryScape starts light-
weight debugging agent processes (called tvdsvr processes for historical reasons),
which run on the nodes of the cluster where the user’s code is executing. These
tvdsvr processes are each responsible for the low level interactions with the individ-
ual local processes and the HIA module that is loaded into the process that is be-
ing debugged. The tvdsvr processes communicate directly with the MemoryScape
front-end process, using their own optimized protocol, which in most cluster con-
figurations is layered on top of TCP/IP.

7 MemoryScape Features

7.1 Using MemoryScape to Compare Memory Statistics

Many parallel and distributed applications have known or expected behaviors in
terms of memory usage. They may be structured so that all of the nodes should
allocate the same amount of memory, or they may be structured so that memory
usage should depend in some way on the MPI COMM WORLD rank of the process.
If such a pattern is expected or if the user wishes to simply examine the set of
processes to look for patterns, MemoryScape features a memory statistics window
that provides overall memory usage statistics in a number of graphical forms (line,
bar and pie charts) for one, all, or an arbitrary subset of the processes that make up
the debugging session. The user may drive the program to a specific breakpoint or
barrier, or simply halt all the processes at an arbitrary point in execution.

Memory Debugging in Parallel and Distributed Applications 85

The set of processes that the user wishes to see statistical information about may
be selected, with the type of view that the user wants, by clicking “generate view.”
The generated view represents the state of the program at that point in time. The
user may use the debugger process controls to drive the program to a new point in
execution and then update the view to look for changes. If any processes look out of
line, the user will likely want to look more closely at the detailed status of the heap
memory.

7.2 Using MemoryScape to Look at Heap Status

MemoryScape provides a wide range of heap status reports, the most popular of
which is the heap graphical display. At any point where a process has been stopped,
a user can obtain a graphical view of the heap. This is obtained by selecting the
heap status tab, selecting one or more processes, choosing the graphical view and
clicking “generate view.”

Fig. 2 MemoryScape Graphical Interface provides an interactive view of the heap. Colors indicate
the status of memory allocations

The resulting display paints a picture of the heap memory in the selected process.
Each current heap memory allocation is represented by a green line extending across
the range of addresses that are part of the allocation. This gives the user a great
way to see the composition of the program’s heap memory at a glance. The view

86 Chris Gottbrath

is interactive; selecting a block highlights related allocations and presents the user
with detailed information about both the selected block and the full set of related
blocks. The display can be filtered to dim allocations based on properties such as
size or the shared object they were allocated in. The display also supports setting
a baseline to let the user see which allocations and deallocations occur before and
after that baseline.

7.3 Using MemoryScape to Detect Leaks

MemoryScape performs heap memory leak detection by driving the program to a
known state (a breakpoint, for example) or by simply halting the processes of a
running parallel application using the “halt” command in the GUI or the CLI. By
selecting the leak detection tab in the memory debugging window, one or more of
the processes in the parallel job can be selected to generate the leak report.

The resulting report will list all of the heap allocations in the program for which
there are no longer any valid references anywhere in the program’s registers, or
accessible memory. A block of memory that the program is not storing a reference
to anywhere is highly unlikely to subsequently be subject to a free() call and is
extremely likely to be a leak. Leaks can also be observed in the heap graphical
display discussed above by toggling the checkbox labeled “Detect Leaks” in which
leaked blocks will be displayed in red on the graphical display.

7.4 Using MemoryScape to Detect Heap Bounds Violations

One of the classes of memory errors mentioned above that is often difficult to diag-
nose is when an error in the program logic causes the program to write beyond the
bounds of a block of memory allocated on the heap. The malloc API makes no guar-
antee about the relative spacing or alignment of memory blocks returned in separate
memory allocations – or about what the memory before or after any given block
may be used for. The result of reads and writes before the beginning of a block of
memory, or after the end of the block of memory, is undefined.

In practice, blocks are often contiguous with other blocks of program data. There-
fore, if the program writes past the end of an array, it is usually overwriting the con-
tents of some other unrelated allocation. If the program is re-run and the same error
occurs, the ordering of allocations may differ and the overwriting may occur in a
different array. This leads to extremely frustrating “racy” bugs that manifest differ-
ently, sometimes causing the program to crash, sometimes resulting in bad data, and
sometimes altering memory in a way that turns out to be completely harmless.

MemoryScape provides a mechanism that involves setting aside a bit of memory
before and after heap memory blocks as they are allocated. Since this bit of memory,
called a guard block, is not part of the allocation, the program should never read or

Memory Debugging in Parallel and Distributed Applications 87

write to that location. The HIA can arrange for the guard blocks to be initialized
with a pattern and check the guard blocks (any time the user asks for a check and
again any time an individual block is deallocated) for a change in this pattern. Any
changes mean that the program wrote past the bounds of the array.

7.5 Collaboration Features in MemoryScape

MemoryScape provides users with two forms of memory reporting that help dis-
tributed development teams collaborate effectively to troubleshoot problems and
improve product quality. Heap memory views can be exported as an HTML file that
can be read by a web browser. These HTML files include Javascript applets that pro-
vide the user with the ability to interact with the report in their browser in a similar
way to the way that the report can be interacted with on screen – allowing the reader
to drill down into sections of the report that are interesting and survey the rest of the
report at a summary level.

MemoryScape also supports the creation of a memory debugging data file. This
is a binary representation of all of the data that MemoryScape has about a process.
These files can be loaded back in at a later date and interacted with just like live
processes. This gives developers the ability to store representations of processes for
later comparison and examination.

Memory debugging data files can also be loaded by the memory module of the
TotalView™ Source Code Debugger. This allows sophisticated users to apply even
more powerful and precise debugging techniques that take advantage of the idea
of having memory debugging and access to all the variables and state data for live
processes.

8 MemoryScape Usage Tips

As discussed, MemoryScape detects many instances where a program has er-
roneously written outside the bounds of heap arrays. Developers and scientists
can compliment MemoryScape’s heap bounds checking with compiler-generated
bounds checking code for arrays that are allocated automatically on the heap or
in global program memory. A number of compilers, including the Intel™ Fortran
Compiler and the open source gfortran compiler, can generate bounds checking code
automatically with a compile line option, for example (-check-bounds for ifort and
-fbounds-check for gfortran).

For developers with more advanced memory debugging needs, the TotalView
Debugger provides a way of debugging memory problems that allows the user to
examine memory information within the source code context of the program. When
doing memory debugging using the TotalView source code debugger, the user can
examine data structures that might contain pointers into the heap memory within the

88 Chris Gottbrath

program. When memory debugging is enabled, these pointers are annotated with
information about the status of the memory block being pointed to.

One advanced technique available to users who are using the TotalView source
code debugger in conjunction with the memory debugger involves the use of watch-
points. Watchpoints are a debugger feature that allows the process to be stopped at
the moment when a given block of memory is written to. When a pointer is writ-
ing “wildly” across memory (into space that is completely unrelated to where the
pointer is supposed to be writing), it can be very hard to pin down.

Guard blocks can be used together with watchpoints to track down this excep-
tionally subtle type of error. The troubleshooting takes two passes. On the first pass
through the program, guard blocks are used to identify a specific block of mem-
ory that is erroneously written to. Then, on the second pass through the program, a
watchpoint is set at that precise address. The watchpoint should trigger twice: once
when the block of memory is painted by the memory debugger and the second time
when the block of memory is overwritten by the wild pointer.

While most users will want to use MemoryScape interactively as outlined above,
ongoing development introduces the possibility that new memory bugs may be in-
troduced at any point. Development teams are encouraged to add heap memory tests
to their ongoing testing strategy. MemoryScape includes a non-interactive command
line version that is specifically designed to be incorporated into an automatic testing
framework. Development teams that use MemoryScape in this way can detect, ana-
lyze and remove new memory errors as soon as they are introduced in development
– before they have any impact in production.

9 MemoryScape User Case Study: SIMULIA Uses
MemoryScape to Find and Fix Bugs Quickly

DASSAULT SYSTEMES is a worldwide PLM leader and software innovator. The
company’s SIMULIA software solutions empower users to create, share and experi-
ence in 3D. SIMULIA’s scalable portfolio of realistic simulation solutions improves
product performance, reduces physical prototypes and drives innovation, including
the CATIA Analysis applications, the Abaqus product suite for Unified Finite Ele-
ment Analysis, multiphysics solutions for insight into challenging engineering prob-
lems, and lifecycle management solutions for managing simulation data, processes
and intellectual property.

Tremendous attention and resources are dedicated to ensuring the high quality of
SIMULIA products. Nevertheless, with each release a few “mysterious” problems
may creep in. They occur very rarely (once in about every 100 or even 1000 runs),
but when they do occur, they defy all human efforts to capture them. These few
problems could also potentially draw tremendous resources.

Historically, the task of finding and fixing such memory bugs has been a time-
consuming and complex task; finding and then understanding these bugs would take
a considerable amount of effort and was very expensive because it involved a great

Memory Debugging in Parallel and Distributed Applications 89

deal of human time and attention. The problems would occur in fully optimized
builds when run on loaded machines, where there is strong contention for memory
between processes, and would also usually occur in very long running jobs that often
take days. Additionally, in many cases there would be no core-dump. Even in the
cases where there was a core-dump, it would point to the result of the corruption,
not the source of it. The source may often be quite a distance away from the point
of the crash.

In most cases, it was found that these mysterious and elusive problems were be-
ing caused by subtle memory problems that would flee at the moment’s notice. After
many frustrating attempts to diagnose these issues using logic and reasoning, it be-
came clear that SIMULIA developers needed a better way to gain insight into what
was happening with memory. Thus the search for a proper tool began. SIMULIA
was looking for something that would allow them to intercept such problems from
the start, to capture their cause, and to fix them at their origin. They ultimately chose
to employ the MemoryScape memory debugger from TotalView Technologies.

Since the company began using the MemoryScape, developers have been able to
find memory problems easily and fix them very quickly - with little effort. “Mem-
oryScape accelerates our ability to identify where and why problems occur in our
software,” said Nick Monyatovsky, software engineer at SIMULIA. “When a prob-
lem occurs, MemoryScape’s GUI provides a very clear view of the source of the
problem, and its scripting interface, and the tool allows us to automate the bug de-
tection process. Now, we run MemoryScape continuously, around the clock. It has
been very effective in uncovering the hidden latent errors in our code. It finds prob-
lems that defy the regular testing methods, and it allows us to fix them proactively.”

On the initial scan, MemoryScape found about 12 problems - and in every in-
stance, it was a memory bug. MemoryScape has provided SIMULIA developers
with a very effective, inexpensive way to find memory problems without spending a
lot of time on the process. The data provided by MemoryScape’s reporting mecha-
nism provides details for developers to immediately see where a problem lies. When
MemoryScape triggers an error, it saves a memory snapshot. This snapshot later
gives a developer a very good picture of the place of the error, the memory contents,
and the context of execution at that time.

The features of MemoryScape that SIMULIA developers have found to be the
most valuable in their development process is the fact that the tool is scriptable and
therefore can be run automatically. When the debugger finds a problem, it gives
developers the information to see it right away and the fix is easy after that. This has
led to tremendous cost and time savings at SIMULIA.

SIMULIA developers have also found MemoryScape to be faster in comparison
to other checkers on the market that are much more troublesome to work with, are
much slower, and require expensive instrumentation. “MemoryScape is fast enough
that we use it to cover a lot of ground and the tool has provided us with a very
efficient way of improving our QA substantially,” Monyatovsky added.

Developers also like the feature of visualizing and analyzing memory leaks, and
classifying them by source file. This information is invaluable, and is very hard
to obtain by using anything else. Another major strength of MemoryScape is its

90 Chris Gottbrath

ability to execute and understand parallel MPI jobs, a key area of SIMULIA’s focus
right now. Having tools that operate in this environment is very important for the
company’s developers.

10 Future MemoryScape Product Plans

Areas for future development of MemoryScape include improved integration of the
product into the TotalView Workbench Manager application. The Workbench pro-
vides a site for sharing configuration and session data between the different develop-
ment tools that a developer may need. The Workbench provides an extensible base
from which users can access recent debugging, memory debugging and performance
analysis sessions.

Because integrated development environments (IDEs) are popular, but not uni-
versally embraced, the Workbench can be used from within an IDE but does not
require the user to be using an IDE. Future versions of the MemoryScape product
will more than likely share state and information about programs, input values and
parameters, memory data files, etc. with the Workbench.

Other areas of future MemoryScape development include improved support for
analyzing the historical usage of memory within the application so that developers
can generate an accurate understanding of the memory usage behavior of the pro-
gram. Perhaps the most frequently requested area of enhancement is in regards to
providing developers with additional options for detecting and reporting memory
reads and writes beyond the extent of heap allocations. TotalView Technologies is
actively investigating possible enhancements that might allow developers to trade
off runtime performance for more detailed information in this area.

11 Conclusion

Memory bugs can occur in any program that is being written, enhanced or main-
tained. These types of bugs are often a source of great frustration for developers
because they can be introduced at any time and are caused by a number of differ-
ent factors. They can also lurk in a code base for long periods of time and tend to
manifest in several ways.

This makes memory debugging a challenging task, especially in parallel and dis-
tributed programs that include a significant amount of data and use a lot of memory.
Commonly used development tools and techniques are not specifically designed to
solve memory problems and can make the process of finding and fixing memory
bugs an even more complex process.

MemoryScape is an easy-to-use memory debugging tool that helps developers
identify and resolve memory bugs. MemoryScape’s specialized features including
the ability to compare memory statistics, look at heap status and detect memory
leaks make it uniquely well-suited for debugging these parallel and distributed ap-
plications.

III
Performance Analysis Tools

Sequential Performance Analysis with Callgrind
and KCachegrind

Josef Weidendorfer

Abstract This chapter presents the suite of tools Callgrind and KCachegrind. The
first is an execution driven cache simulator, which outputs profile information on
cache events, as well as the dynamic call graph of the execution, attributed with call
counts and inclusive costs. KCachegrind is a visualization tool tailored at browsing
the results gathered by Callgrind. After some introduction to sequential performance
analysis and related tools, the tool suite is presented, followed by typical use cases.
Finally, future developments are discussed.

1 Introduction

This chapter present the suite of tools Callgrind and KCachegrind [10], which
mainly is used for sequential performance analysis. Development tools for pro-
gram parallelization are the main objective of the “Parallel Tools Workshop”. How-
ever, parallel code is composed of sequential code parts. Thus, the performance
of frequently executed sequential code plays a significant role. One can classify
performance bottlenecks of a parallel program into issues which also appear with
sequential code, and issues only happening with parallel code, such as communi-
cation/synchronization overhead, or wasted time because of load imbalance. Both
can influence each other. E.g., optimization of sequential code can change the load
balance of parallel code. Sequential optimization can even require a more complex
parallelization strategy. Further, when the partitioning of data in a parallel program
leads to data partitions fitting into cache, this influences the sequential performance.
Therefore, sequential and parallel performance optimizations are not independent
from each other. As a rule of thumb, one should first go for the best sequential
performance, e.g. by running the MPI program with one task only, and afterwards

Department of Informatics,
Technische Universität München, 85748 Garching b. München, Germany
Josef.Weidendorfer@in.tum.de

93

mailto:Josef.Weidendorfer@in.tum.de

94 Josef Weidendorfer

switch to parallel performance issues. In the following, when talking about perfor-
mance analysis and optimization, only sequential performance is of concern.

First, a short overview of sequential performance analysis is given, presenting
tools for sequential performance analysis. Then, the measurement tool Callgrind is
presented, how it compares to the other tools, and its cache model and different
features. After an overview of the visualization tool KCachegrind, typical usage
scenarios are provided. The chapter concludes with features to be introduced in the
future.

1.1 Short Overview to Sequential Performance Analysis

According to D. Knuth, “premature optimization is the root of all evil” [5]. Micro-
optimization in the implementation phase is not only bad for code readability but it
is also a waste of time for the developer. Optimization generally should be done after
the implementation phase on bug-free code. It is important to concentrate on opti-
mization of code parts where local performance improvements map to allover im-
provement. To find these code parts, performance analysis tools are used. While the
localization of code to optimize is the main usage of such tools, it also is important
to show what is going wrong, and to give hints about ways leading to performance
improvements. Further usage scenarios for analysis tools are:

• Checking the correctness of assumptions on runtime behavior. E.g. when the
tool outputs the exact number of times a function was called, and this differs
much from the expectations of the programmer, there probably is a logical error
somewhere. This is especially important when using library functions, and the
time complexity of the library function differs from expectations.

• With the tool being able to measure single functions, one can directly decide
about the best implementation from multiple alternative algorithms for a prob-
lem.

• Another use of analysis tools is to get knowledge about any unknown code. As
the tool pinpoints the timely dominant code parts, one can assume that these are
also the important parts of the code. By providing the call graph to these code
positions, the ordering of how to get familiar with foreign code is given.

Reason of Bottlenecks in Sequential Code

After the tool pinpoints the code portions where most time is spent, and thus, where
any performance optimization would show best allover improvement, the actual op-
timization depends on the type of bottleneck. The reason of bottlenecks in sequential
code can be categorized as follows:

• Logical errors that do not influence the correctness of the program but have neg-
ative impact on performance. This includes redundant calls to functions with

Callgrind/KCachegrind 95

idempotent results such as multiple initialization, or function calls done always
but needed only sometimes depending on input. If the tools shows that time-
dominant functions are called excessively often, or loop counts inside of the
function are unexpected high, a logical error could exist here. To become aware
of such an issue, the tool needs to collect call and jump/loop counts.

• Wrong algorithm for a problem with unneeded high runtime complexity. The
solution is to test different algorithms.

• Bad runtime behavior dependent on system architecture characteristics, resulting
in slow code execution. Reasons for execution stalls are (1) memory accesses
missing the cache, thus waiting for data from slow main memory, (2) unpre-
dictable control flow changes, (3) data dependencies limiting the instruction level
parallelism, (4) further issues depending on microarchitectural limitations. With
modern processors, bad memory access behavior is by far the biggest problem,
as a cache miss can last hundreds of processor cycles. The tool needs to be able
to show the exploitation of processor resources. This usually needs hardware to
support the collection of according event types, and the tool being able to access
this hardware support.

In the scope of high performance computing, it is worth to avoid bottlenecks in
every category, as even minimal relative runtime improvement can map to signifi-
cant absolute improvement, taking into account the typical long runtimes. While the
first two types of reasons for bottlenecks are usually taken care of after the imple-
mentation phase of a program, the last category needs further analysis every time the
hardware changes. Especially for architecture aware optimizations, it is important to
understand why a given code property results in stalls at some points in the microar-
chitecture in order to be able to find fitting solutions. While it can be expected that
improvements in cache exploitation lead to real performance improvements, this is
less the case for the other reasons for pipeline stalls mentioned above. However,
every optimization step should be checked for real time improvements. A reduction
of some event count measured by the tool is not enough.

Performance Measurement Techniques

A tool for sequential performance measurements typically allows to measure event
types such as clock ticks (ie. time), function calls, percentage of bus utilization,
or cache misses. These events have to be related to the code region where events
happen, or even better, also to the full call path starting from main down to the code
region. This allows the developer to identify the context of event occurrences more
easily, especially when a function is called from different places, or the functions is
inside of a library unaccessible to the programmer. For the latter, any code changes
would have to be done up the call chain.

Storing the occurrence of every single event is often not possible because of
the high amount of data this would produce. As the tool usually runs on the same
hardware as the program to be measured, resource consumption of the tool itself

96 Josef Weidendorfer

should be kept to a minimum to not influence the measurement, thus destroying the
usefulness of the measurement itself.

There are different solutions for minimizing the impact of a performance analysis
tool:

• Online aggregation. Instead of storing a sequential stream of time-stamped events
(a Event Trace), counters are incremented. Multiple counters can be used for
different code positions, resulting in a histogram of event counts. This is called
a flat profile. Summing up the counts for each function gives exclusive costs,
ie. event counts for events happening in this function. By also relating event
occurrences to all the functions up in the call path (call path profiling) gives
inclusive costs for functions, ie. event counts for events not only happening in
a given function, but also in all functions called from there. The advantage of
online aggregation is that the size of the measurement data depends on code size,
and not runtime (as is true for full event traces).

• Statistics instead of exact counts. The distribution of events to code positions
typically does not change much when only every n-th event is checked. This is
called Sampling, and is supported by all processors nowadays with hardware
performance counters. A counter for a specific event type can be configured
to trigger an interrupt calling into the tool, after a given number of events oc-
curred. The advantage is that the overhead of the measurement tool is tunable,
and there does not need to be any instrumentation of the target binary for the tool
to work. Instrumentations are code modifications needed for basic functionality
of a analysis tool. Any such instrumentation is an overhead potentially disturbing
the measurement.

• Architecture simulation. This systematically avoids any influence of the mea-
surement tool on the measurement. However, for practical reasons, the simula-
tion slowdown has to be acceptable. This usually means that the model has to be
quite simple, and only part of the microarchitecture of a processor is covered.

1.2 Related Tools

The best known tool for performance analysis of sequential code probably is
GProf [3]. It uses Sampling based on time intervals (available in every OS) and
compiler instrumentation, to get the exact count of method calls. The latter allows
to heuristically build up the call graph and calculate inclusive costs. However, for
this, the application as well as every shared library used needs to be recompiled
with a special compiler flag for instrumentation for correct results. Unfortunately,
the instrumentation often leads to high measurement overhead, especially when tiny
functions are called often. Additionally, the heuristic for the calculation of inclusive
costs can go wrong.

With the availability of hardware performance counters in processors, the Sam-
pling method is most commonly used today by tools from hardware vendors such as
Intel, Sun, SGI and others. Intel VTune [4], which is available for Intel processors,

Callgrind/KCachegrind 97

running on Windows or Linux, allows sampling both system-wide and per process.
It also has a mode for collection of the call graph using binary instrumentation.
OProfile [6], available for almost any architecture running Linux, does system-wide
profiling with the need for root access, taking advantage of performance counters.
Sun Performance Analyzer [8]) is similar to VTune, running both on Linux and So-
laris as part of the Sun Studio IDE. Vendor tools usually offer sophisticated binary
instrumentation to get the call graph and exact call counts. However, this can have
the same overhead issues as GProf.

For sure, architecture simulation is an important tool in the design process for
every hardware vendor, but these in-house simulators are not publicly available. Be-
sides, cycle-accurate simulators probably are not practically useful for performance
optimization because of their huge slowdown. However, there is a system simulator
available from AMD with are very simple CPU model [1]. Further, there were quite
some simulators developed for architecture research such as [2, 9]. They typically
rely on offline memory traces, as they are tailored for parameter studies. Callgrind,
presented in the next section, specializes in ease-of-use for the purpose of perfor-
mance analysis, helping programmers to optimize their code.

2 Callgrind: a Call-Graph building Online Cache Simulator

Callgrind is a performance analysis tool based on architecture simulation. The sim-
ulation is execution driven and is done together with event aggregation on the fly,
ie. simultaneously to the execution of the target code. Calling into simulation needs
instrumentation, which is done at runtime, thus allowing the tool to work on unmod-
ified compiled code.

The dynamic runtime instrumentation is provided by the open-source package
Valgrind1 [7]. Valgrind includes a set of tools for correctness checking and perfor-
mance profiling, such as an memory correctness checker (Memcheck), a race detec-
tor (Helgrind), a memory profiler (Massif), and performance analysis tools based on
cache simulation (Cachegrind, Callgrind). With its runtime instrumentation infras-
tructure, Valgrind Tools can observe user-level processes compiled for Linux or AIX
on x86, x86-64, PPC32, or PPC64. Valgrind, as well as Callgrind, is open-source
covered by the GPL.

Callgrind is more or less an extension of Cachegrind, optionally using its cache
simulation model, but adding the ability to track any calls happening in a program
run. While Cachegrind provides a flat profile of the number of cache events happen-
ing in functions (ie. exclusive costs) in its output, Callgrind also provides inclusive
costs with the help of call tracking. In contrast to GProf, which heuristically calcu-
lates the inclusive cost from call counts, Callgrind directly collects it by storing the
value of a global event counter at function enter, and subtracting it from the counter
value at function exit.

1 Valgrind homepage: http://www.valgrind.org

http://www.valgrind.org

98 Josef Weidendorfer

Together with a graphical visualization of the call graph, this allows to see the
cost distribution starting from main(), and going down the call chain to the func-
tion where most cost is spent. When these costs are spent deep down in some 3rd-
party library, it is easy to recognize the own code which is responsible for calling the
library, and this exactly is the position where changes are required for improvement.

2.1 Cache Model and Events

The cache simulator models a synchronous, two-level, inclusive cache with separate
L1 instruction and data caches, and an unified L2 cache. Synchronous means that
the simulator always handles cache accesses at once, and there can not be multiple
access requests simultaneously in completion. An inclusive cache hierarchy always
fully contains the cache lines of smaller levels in higher, larger cache levels. Writes
always are passed from the L1 (ie. L1 is write-through) to the L2 cache, so that
afterwards, the written-to cache line occupies space both in the L1 data cache and the
L2 unified cache. Both caches work with user-level addresses (ie. virtual addresses);
there is not simulation of a translation lookaside buffer (TLB). At every memory
access, the simulator first checks the level-1 cache (depending on the access either
the L1 instruction or L1 data cache) for the cache-line holding the accessed address,
and on a miss, it also checks the level-2 unified cache. Whenever there was a miss
in L1 or L2, space for the according cache line is reserved, possibly evicting another
line. The replacement strategy used is LRU.

This cache model resembles a simplification of the cache hierarchy used e.g. in
Intel Pentium-3/4/M single-core processors2. Callgrind (and Cachegrind) by default
check the real processor3 for L1/L2 cache sizes, cache line length, and associativity.
The idea is that the user probably wants the simulation to be similar to the real-
ity on the processor of the machine the simulation runs on. However, these cache
parameters can be explicitly given on the command line, too.

Events generated by the cache simulation are L1 hit, L2 hit, or L2 miss. For each
of these three results, the type of access (instruction read, data read, or data write)
is noted, too, so that there are nine different possible event types. In the output,
counters for these events are given per source line, or optionally even per instruction
address. The set of event types does not specify the kind of eviction triggered by a
miss. For a L2 write-back cache, the dirtiness of a cache-line (ie. modified or not)
would have influence on the cost (bus occupation), as a modified line needs to be
written back. However, because the events do not distinguish between different miss
kinds, the cache model thereby does not specify whether the L2 cache is write-back
or write-through: both cache types result in the same event counts.

2 Newer Intel processors using the Core microarchitecture have a write-back L1 cache, leading the
a slightly different behavior. AMD processors always had exclusive caches, where on a miss, data
is always loaded into L1, and lines evicted from L1 are stored into L2 (acting as victim cache),
leading to different content in L1 and L2.
3 via the CPUID instruction

Callgrind/KCachegrind 99

It is important to note that the cache simulation can not say anything about the
stall time in the processor core because of cache misses. This would need an cycle-
accurate simulation not only for the cache, but also for the CPU microarchitecture,
and probably more important, for the system bus, memory controller, and DRAM
chips. Aside from the fact that hardware documentation for a given processor is
not available in the detail needed, the simulation would not by practically useful
any more because of the simulation slowdown. However, as memory accesses often
slow down application performance in practice, a relative reduction of L2 misses of-
ten maps to faster runtime performance. Quantitatively, one can construct a heuristic
giving worst-case cache latency by measuring the worst-case miss latency of an L1
and L2 miss on a real machine, e.g. with the Calibrator tool4, and use this as cycle
estimation. This worst-case derived5 event is provided as “cycle estimation” event
(CEst) within KCachegrind. For adjustment to the cache latencies of a given pro-
cessor, the coefficients in the formula of this derived event can be edited. However,
this worst-case heuristic can be wrong because of other application activity (such as
lots of heavy calculations), partially or even completely hiding the cache latency.

Comparison with Real Processor Caches

The following discrepancies of this simple cache model to any real processor (best
comparison would be e.g. an Intel Pentium-M) can be noted:

• Synchronousness. Any real cache hierarchy can have multiple requests in the fly,
handling them in an asynchronous way. While this would drastically raise the
complexity of the simulator, the event counts get far more difficult to interpret
and understand: E.g. 10 accesses in a row to the same not-loaded cache line lead
to up to 10 L1 misses and only one L2 miss for the asynchronous case, depending
on the timing of the accesses and on the out-of-order capability of the execution
pipeline.

• No simulation of hardware prefetchers. Every cache implementation nowadays
includes automatic prefetching of data by predicting future accesses. Thus, real
accesses potentially find the needed data in the cache, depending on the correct-
ness of the prediction and the pre-loading in time, which also depends on the
bus load. The influence on application performance can be significant. However,
the existence of HW prefetchers is architecture dependent. Optimization based
on the simple cache model will result in faster performance also on processors
without prefetchers.

• No difference in events between write-through/write back L2. Cache hierarchies
in all processors have a write-back behavior on the last level to reduce bus activ-
ity. Thus, writing back dirty evicted cache lines can have a performance impact.
However, this happens on writes, and typically, a write transaction can be done

4 http://monetdb.cwi.nl/Calibrator
5 A derived event is an event not measured directly, but calculated from other events

http://monetdb.cwi.nl/Calibrator

100 Josef Weidendorfer

completely in the background, not influencing the runtime (in contrast to a mem-
ory load, where the value is needed for further processing).

While these differences to real processor hardware exist, reduction of cache
events of the simple model usually also lead to reductions of events on real hard-
ware. And typically, it also results in reduction of runtime. However, as already
stated in the introduction to this chapter, additional runtime measurements are al-
ways needed to check that there is real runtime improvement.

There are important benefits to a simple cache model aside from the simulation
time:

• The results of the simple cache model are easy to understand and, with help of
event attribution on instruction level, also easy to reconstruct. They usually match
an a-priori analytical analysis of the cache behavior of the code. This allows to
better estimate the improvement of code caches beforehand, and therefore, leads
faster to satisfying optimization results.

• The cache simulation results are reproducible. For comparison of the effective-
ness of a code optimization, it is far better to be able to rely on stable and
reproducible measurement results. Results on real processors can vary heavily
with the same code from execution to execution, depending on history and other
background system activity. This usually leads to the need for averaging runtime
results of time consuming, multiple runs.

• Is is good when optimizations work on any architecture. So-called cache obliv-
ious algorithms exploit caches whatever the capacity is. Optimizations working
in a simpler cache model typically lead to better architecture independence of the
runtime improvement. On the other hand, it can happen that no improvement can
be observed with sufficiently sophisticated hardware.

Extensions to the Cache Model

The basic cache model of Callgrind, as described in the previous section, is the same
as found in Cachegrind. In Callgrind, there are further options to extend this simple
cache model in two ways:

• Explicit specification of write-back behavior for the L2. Each of the three L2 miss
events (for instruction read, data read, data write) are further subdivided into a L2
miss event with dirty and non-dirty state, respectively. For the cycle estimation
derived event using worst-case cache latencies, the formula can be extended to
account the double time for the three additionally added L2 miss events evicting
a dirty, modified line before. The motivation is that there are two bus transactions
instead of one6. While the cache extension seems to be useful, the results usually

6 Unfortunately, the previously mentioned Calibrator tool does not measure L2 misses with dirty
line eviction.

Callgrind/KCachegrind 101

do not differ much from the basic cache model7. This write-back extension is
switched on with the command line option “–simulate-wb=yes”.

• Addition of a best-case hardware prefetcher. As stated in the introduction, every
processor nowadays has mechanisms which try to predict future memory ac-
cesses and prefetch data which is expected to be accessed in the future by a pro-
gram. In the optimal case, a prefetch is completed when the data is needed, thus
fully hided memory latency. The prefetch simulation predictor detects at most 16
sequential stream accesses (up or down) inside of memory pages of 4 kB when
these are the only accesses in a page. On an memory access which is part of a
detected stream, the cache line which is 4 lines apart from the given access in the
detected direction is loaded into cache without any latency at all. Thus, it is as-
sumed that every prefetch can be fully hidden (ie. best-case). This simple stream
prefetcher scheme should be part of any real hardware prefetcher implemented in
processors nowadays. For example, it is quite similar to the one found in recent
Intel processors for the L2 cache. When to only option to optimize for memory
accesses is the insertion of software prefetch instructions, this cache model ex-
tension can guide where such prefetch instructions are really needed, and where
they are unneeded, as covered by the hardware prefetcher. This is important as
the insertion of software prefetch instructions also can slow down code because
of limited instruction decoding bandwidth. The prefetcher extension is switched
on with the command line option “–simulate-hwpref=yes”.

Metrics Extension: Cache Exploitation

While not strictly part of the cache model, an important property of a simulator
are the event types and metrics which are derived from the simulator state changes.
The default for Callgrind are, as mentioned above, nine cache events, providing the
result of accesses into the cache hierarchy as L1 hit, L2 hit or L2 miss. These are the
events which typically also can be measured with hardware performance counters,
and hint at code positions where there is a potentially stall because of slow memory
accesses. However, an question not answered by these events is, how the cache is
exploited by the application. For any cache optimization, the goal is to improve
the locality of memory accesses. This can be subdivided into temporal locality (the
same memory cell is accessed multiple times) and spatial locality (memory accesses
are to nearside memory cells). Processor caches are beneficial because these two
types of locality generally appears in any program, which is an observation called
Principle of Locality. Holding copies of memory cells exploits temporal locality,
and caching blocks of memory does exploit spatial locality.

To show potential for better cache exploitation, it is important to quantify the
two locality types. The needed information can be captured via the cache simulator

7 There is an interesting exemption: Searching for prime numbers using the algorithm “Sieve of
Eratosthenes” has a lot of unnecessary writes where the latency can not be hidden by processors.
By getting rid of them, real caches show doubled performance. To show this effect, this write-back
simulator extensions has to be switched on.

102 Josef Weidendorfer

state. For temporal locality, it is important to know how many times a given cache
lines was accessed before it was evicted, and for spatial locality, the percentage of
bytes really accessed in a cache lines before being evicted is relevant.

Any visualization of program performance should point at bad behavior. There-
fore, the new event types introduced for cache exploitation should be large for bad
locality behavior. The following events are generated via the command line option
“–cacheuse=yes”:

• Access Cost events AcCost1 for L1 and AcCost2 for L2, respectively. These
events show bad temporal locality. As KCachegrind/Callgrind currently only can
handle integer values for event types, a value of 1000 is defined as Access Cost
for a cache miss. When there are two accesses to a cache line before eviction,
the cost is 500 for both of the accesses, and so on. Because of practical issues,
this model has to be changed: we need to relate the event to a code position. The
solution is to relate the access cost of all accesses to a cache line to the code
position which triggered the load of the line.

• Spatial Loss events SpLoss1 for L1 and SpLoss2 for L2, respectively. These
events show bad spatial locality by providing the number of bytes not accessed
by the processor before eviction. Thus, SpLoss2 directly gives the size of data
which was unnecessarily loaded into L2. This can be set into relation to the full
amount of data loaded into L2, which is the number of L2 misses multiplied
by the cache line size. Regarding relation of this event to a code position, the
unneeded bytes of a cache line are attributed to the position which triggered the
cache line load.

The used code relation for cache exploitation events unfortunately is not easy to
interpret. It would be better to use attribution to data structures, which currently is
not supported in Callgrind and can not be visualized in KCachegrind. At least, from
the code position, it can be looked up which data was accessed. With bad spatial
locality, the layout of the data in memory should be redone. It generally is better for
the cache to put data nearside which is used in a similar way by the program. Only
with bad temporal locality, code restructuring is needed.

2.2 Additional Callgrind Features

Callgrind consists of two main features: (1) the tracking of calls for building up the
call graph, getting call counts, and enabling collection of inclusive cost, and (2) the
cache simulator, which already was described in length. The first feature is useful
on its own, and as the cache simulator adds to the slowdown, it is switched off by
default. Without any options, only number of executed instructions executed (Ir
for “instructions read from cache”, which gives the same value in the simple cache
model) and function calls are collected.

Callgrind/KCachegrind 103

2.2.1 Control Flow Collection

When analyzing a function alone, the control flow (e.g. number of loop iterations)
is interesting. This needs the collection of (conditional) jumps executed, and is
switched on via command line “–collect-jumps”. The jumps can be visualized in
KCachegrind next to the source code. However, there is an issue: as performance of
the compiler optimized version has to be analyzed, there can be quite some restruc-
turing done between source code flow and assembly code, leading the strange jump
annotation in the source. To avoid this confusion, it is better to look at the assembly
code annotated with jumps. For Callgrind to give output at instruction level, one has
to use the option “–dump-instr=yes”, which should be used always when analyzing
the control flow.

In KCachegrind, unconditional jumps are shown in blue, whereas conditional
jumps are shown in red (see Fig. 4).

Avoiding Slowdown for Uninteresting Program Phases

Often, there is uninteresting initialization going on at program start. Such program
phases can be executed with a slowdown of only factor 2 – 3 (which is the slowdown
of running a code in Valgrind without any additional instrumentation) by chang-
ing the instrumentation mode to “off”. For the instrumentation mode to be off at
program start, use “–instr-atstart=yes”. For toggling instrumentation mode when
entering/leaving a function, use “–toggle-collect= f unction”. Note that f unction is
allowed to contain wildcards “*” (matching zero or more arbitrary characters) and
“?” (matching one arbitrary character).

Instrumentation mode also can be explicitly set in the program to be analyzed by
including the header callgrind.h and using a Valgrind Client Request e.g. by
inserting the C preprocessor macro CALLGRIND START INSTRUMENTATION.
For further details, see the Callgrind online manual.

When cache simulation is done, it is important to understand that the cache is
fully flushed at changes of the instrumentation mode. To not see the many cold
misses, one should use a “warm-up” phase after switching on instrumentation,
where no collection of events is done. For details on switching on/off the collec-
tion mode, see the online manual.

Interactive Control

While Callgrind is running, its current status (function call stack, events collected)
can be requested any time with “callgrind control -b”. There are more interactive
commands, like requesting a profile dump with option “-d”, switching on/off instru-
mentation mode (see last section), and so on. See the manual for this command for
details.

104 Josef Weidendorfer

While not really interactive, the same commands can be triggered by the program
being observed, either via client requests (similar to the example use of the macro
CALLGRIND START INSTRUMENTATION above), or via specifying the trigger-
ing code position on the command line. E.g. “–dump-before= f unction” generates a
new profile dump every time the given function is entered.

Cycle Avoidance

In issue of general concern to profiling tools is how to handle mutual recursion8.
Recursion happens when one or multiple functions calling each other in a mutual
way. Then, the form a so-called cycle. This can be problematic for program analysis
because inclusive cost is not defined for calls inside of a function cycle. Despite of
this, Callgrind collects bogus “inclusive cost”. The visualization tool has to detect
function cycles and prohibit the visualization of inclusive cost inside of them.

For small cycles, this is no issue for the analysis. For large cycles covering much
of a programs functions, the benefit of collecting inclusive cost is lost. The impor-
tance of inclusive cost is highlighted by the fact that it is used to cut off the uninter-
esting portions of the call graph visualization. Thus, with large function cycles, the
call graph visualization often is useless, too.

To understand the full problem, one has to realize that from a profile dump which
only gives the number of calls happening, it can not be detected whether existing
calls really happened in a recursion, given that they can be ordered in a way to
produce a function cycle. E.g. with calls A→B, B→C and C →A, one can construct
the recursive cycle A → B →C → A. The visualization has to assume that this cycle
really happened, and can not provide inclusive cost any more. This is true even if
there really only existed the call chains X1 → A → B → Y1, X2 → B → C → Y2,
and X3 → C → A → Y3 (the assumed recursion here is called a false cycle). In the
paper on GProf [3], there is a detailed explanation of how profile visualization tools
handle this issue (KCachegrind does the same). In effect, artificial functions called
like “cycle1” are introduced for potential recursions, consisting of all the functions
which are part of recursion.

For programs using event based program style (e.g. GUI code), which are
mapped to callback mechanisms by the compiler, there often are cycles covering
most of the functions of the program. For this, Callgrind has options which can
avoid these functions. One such solution is to store not only the code position of
a event, but a call chain as context. For further details, see the Callgrind manual
chapter about Cycle Avoidance.

8 This seems to be less important for HPC code, which is the main target in this Workshop.

Callgrind/KCachegrind 105

Miscellaneous

While mainly targeting sequential performance analysis, Callgrind can produce dif-
ferent profile output for each thread of a multi-threaded program. This mode is
switched on with “–separate-threads=yes”.

3 KCachegrind: Profile Visualization

Fig. 1 A screenshot of the KCachegrind window, showing the ordered function list on the right
and the call graph visualization around the active function (center of the dark background shading)
on the left

While there is a command line tool for providing sorted function lists as ASCII
output on the profile data (“callgrind annotate”), and which even can print anno-
tated source code, it is only some kind of work-around for people not able to have
KDE libraries installed on their machines. The command line tool is missing cycle
detection and handling (see 2.2.1), as well as assembly code and jump annotations.

Profile data files generated by Callgrind is stored in the same directory where
Callgrind was started. The file name has the form “callgrind.out.PID” (possibly

106 Josef Weidendorfer

appended by further numbers when multiple dumps are generated). Here, PID is
the process ID of the observed run9, and this number also is printed as prefix in the
log output produced by Callgrind on the terminal (see 4). When there is only one
profile data file in the current directory, simply starting KCachegrind will pick it up.
With multiple files, one can provide the file to load on the command line, or use the
“File/Load” dialog.

Fig. 1 shows the general layout of the KCachegrind GUI. For all visual parts of
the window, there exists a “What’s this” help text. It is shown on selecting a window
part after pressing Shift-F1.

3.1 Basic concepts

There are a few important concepts. The basic item visualized by KCachegrind is
a Cost Item, which can be a function group (ELF object, source file, C++ class,
function cycle), or a function itself. There is always one cost item active, and this
item can be chosen, and is shown selected in the function/group list on the left of
the window (activating a function group is done by enabling the group type via the
combo on top of the left list, and double-clicking on the group itself; to active a
function, a single click in the function list is enough). The active cost item is visu-
alized on the right side of the window, in different visualization views (split in top
and bottom areas; views can be moved between areas via a popup menu appearing
by right clicking a view tab title). The name of the active item can be seen on top of
the visualization views. Every visualization is done around, and based on the active
item. See below for a description of the different view types. Inside of visualiza-
tion views, there also exists the possibility to choose a cost item with a single click
which becomes selected. While a change of the active item changes all the visual-
izations, centering them around the active item, a change of the selected item does
only change the highlighting of this item in all existing visualizations. This allows to
have a synchronized, highlighted view to the selected item in all visualization views.
Double-clicking on any item in a visualization view changes the active item. Near-
side any function name, there is a small colored rectangle. When function grouping
is switched off, this simply is a color coding for this function, derived from the
function name itself. When function grouping is on, the color identifies the function
group, and not the function itself. This color, identifying either the function group or
the function, is also used for coloring the visual representations of the functions (or
the group they are part of) in different visualization views, thus allowing the better
visual identification of the appearance of the identical function.

Callgrind eventually provides multiple values for different event types attributed
to each cost item. Similar to the active item, there exists an active Event Type10

9 The observed executable runs in the same process as Callgrind. This is a generic property of
Valgrind tools.
10 In addition, there optionally is a second active event type, which is useful to compare two event
type values in visualization views.

Callgrind/KCachegrind 107

Fig. 2 Visualization panes
showing the list of event types
collected (top), as well as a
list of callers/callees of the
selected function (bottom)

specifies the event type used for all the numbers shown near to cost items both
on the list on the left as well on visualization views on the right. For each event
type, there can be exclusive (also called Self Cost) and inclusive cost (described
in 2), depending on the cost item type: inclusive cost is only defined for functions
(and also used as attribution of calls). For function groups, or subitems such as
source/assembly lines, only exclusive cost is provided. Aside each cost value, there
is a small colored bar shown. It provides a fast visual feedback whether the cost is
important or not. The color actually encodes the event type: blue color shades means
instruction/data reads/writes hitting the L1, thus allowing quite full CPU utilization.
Green corresponds to L2 hits, and red to L2 misses. See the top of Fig. 2 for the exact
color coding. For derived events, the colors are mixed depending on the percentage
a given basic (ie. measured) event type attributes to the value of the derived event.
This is given by the coefficients in the formulas of derived events. This makes it
easy e.g. for the “Cycle Estimation” event to see the partitioning on estimated time
spent in computation (blue), in waiting on L1 misses/L2 hits (green) and L2 misses
(red).

108 Josef Weidendorfer

Fig. 3 Visualization panes
showing the Callee Map

Description of Window Parts

At the top of the window there is a menu bar, with available items mostly self-
explaining. Below, often used actions are provided in the tool bar. Not obvious is
the third button from the left, which requests a profile dump from a simultaneously
running Callgrind in the same working directory, and reloads all profile portions
afterwards. It provides the only interactive control to Callgrind from KCachegrind.
The button with the arrow cross changes the relation of percentage values. When
pressed, 100% always relates to the cost of a parent item: e.g. source line cost to
function cost, or cost attribution in the call graph to the selected function. When
not pressed, the relation is always to the total count of the currently selected event
type. On the right of the arrow button, cycle detection can be switched off (mostly
interesting for analysis of GUI applications). Finally, on the far right, there is a
combo box allowing to change the active event type (see basic concepts above).

On default, function grouping is switched off on the left side of the KCachegrind
window. This side shows a list of functions, sorted in descending direction either by
inclusive cost, exclusive cost, call count in lexical order of the function or function
location. The actual ordering can be chosen by clicking an the according header
cells. This list shows only the most important functions according to the selected or-
dering, to make the GUI fast even with profiles with hundred thousands of functions.
To search a given function, start typing its name in the search box. The search is in-
cremental, and results will update on each key press. Next to the search box, there
is a combo box where the function grouping type can be selected. On any group-
ing other than “None”, there will be an additional smaller list shown with available
function groupings of the selected type. The function list itself only shows functions
belonging the the selected group in this mode.

Most important is the window part with the visualization views on the right. In
Fig. 1, the Call Graph visualization is shown. It shows a visualization of only a small
part of the full call graph of the program, centered around the active function. The
active function is visually emphasized as the center of a dark background shading,
enabling the active function to quickly be recognized also in the birds-eye graph

Callgrind/KCachegrind 109

overview in the top left. The threshold for the cutoff of the shown call graph part
can be changed in the context popup menu, which is shown on right click into the
view.It is clear that the cost of callees downwards is always less than the cost of the
active function. However, this is also true in caller direction upwards. To understand
this, one has to note that only that part of the actual cost of any caller/callee is
shown, that is also spent in the active function itself. Thus, if there are 2 callers
of the active function, one can see the distribution of time coming from one two
call chain, respectively. Also, if e.g. the main function is shown as caller in the call
graph, its cost still can not be more than the cost of the active item. The selected item
can be changes by clicking on it, or by keyboard navigation. Note that also calls can
be selected. As mentioned above, when there are multiple visualizations visible, a
change of the selected function will highlight this function in every visualization.

Quite simple visualization views are the Caller/Callee lists. As example, at the
bottom of Fig. 2 the Callee visualization is shown. There exist extensions to these
simple views titled All Callers/Callees. There difference is that these not only show
the direct callers/callees, but all callers/callees reachable from the active function.
At the top of Fig. 2, the event type visualization is shown, which is a list of all event
types with according values for the active cost item. Clicking on an event type line
changes the active event type. Further, new derived event types can be added here
via the context menu, and formulas of derived event types can be edited.

A more sophisticated visualization view is the Callee Map, shown in Fig. 3. In
contrast to the call graph view, it shows the call relationship as nesting of rectangles.
Callees are drawn inside of the caller rectangle11. The area size of a rectangle is
proportional to the inclusive cost of the function this rectangle represents. Thus, it
is easy to spot functions with large inclusive costs, even if there are a lot of callees,
or when the indirectly called function is a large distance away in the call graph.

Further, Fig. 4 shows the source and assembly annotation views, here additionally
with jump visualization (red are conditional jumps, blue are unconditional ones). On
lines where calls/jumps are starting, for every call there is a further line inserted into
the source/assembly, showing call/jump counts. Selecting these lines will select the
corresponding call/jump as selected item. It is interesting to note that the last column
in the assembly annotation list shows the debug information the compiler produced
for the given instruction, ie. the related source line number.

Not shown here is the profile part visualization. When there are multiple profile
parts are loaded into one window (via the File/Add... item), this profile part list
becomes available. Here, the set of active profile parts can be chosen whose costs
are to be shown. For any other parts, as the optional side bars, see the available
“What’s this” help.

11 The Callee Map visualization is a so-called Tree Map, actually showing call trees and not call
graphs. Thus, selecting a function in another view can highlight multiple rectangles, which all
representatives of the selected function, but part of a different call chain.

110 Josef Weidendorfer

Fig. 4 Visualization panes
showing the source (top) /
assembly (bottom) annotation
views, in the bottom addition-
ally with jump annotation

4 Usage Example

In the following, we show the influence on cache behavior of iterating over a matrix
either row- or columnwise. To example code is shown in Fig. 5. After compilation
with cc matrix.c -o matrix, a Callgrind run without further options (ie.
without cache simulation), produces the following output:

weidendo@lapbode:˜tmp> valgrind --tool=callgrind ./matrix
==18766== Callgrind, a call-graph generating cache profiler.
...
==18766== For more details, rerun with: -v
==18766==
==18766== For interactive control, run ’callgrind_control -h’.
==18766==
==18766== Events : Ir
==18766== Collected : 31122717
==18766==
==18766== I refs: 31,122,717

When visualizing the resulting profile in KCachegrind, one can see that each of
the two matrix sum functions has exactly the some number of instruction execu-
tions (absolute values probably will be different depending on architecture, com-

Callgrind/KCachegrind 111

piler, compiler version, version of C runtime library and so on). On the authors
machine these are 11,007,012 instructions.

A more elaborated Callgrind execution with cache simulation on and profile
dump information and instruction level, including jump collection, is given by

weidendo@lapbode:˜tmp> valgrind --tool=callgrind \
--simulate-cache=yes --dump-instr=yes \
--collect-jumps=yes ./matrix

==19136== Callgrind, a call-graph generating cache profiler.
...
Events : Ir Dr Dw I1mr D1mr D1mw I2mr D2mr D2mw
Collected : 31122763 13042032 6021808 569 1125785 125317..

I refs: 31,122,763
I1 misses: 569
L2i misses: 564
I1 miss rate: 0.0%
L2i miss rate: 0.0%

D refs: 19,063,840 (13,042,032 rd + 6,021,808 wr)
D1 misses: 1,251,102 (1,125,785 rd + 125,317 wr)
L2d misses: 370,406 (245,101 rd + 125,305 wr)
D1 miss rate: 6.5% (8.6% + 2.0%)
L2d miss rate: 1.9% (1.8% + 2.0%)

L2 refs: 1,251,671 (1,126,354 rd + 125,317 wr)
L2 misses: 370,970 (245,665 rd + 125,305 wr)
L2 miss rate: 0.7% (0.5% + 2.0%)

At the end of the run, the event types together with the total counts are shown,
and afterwards some statistic about cache miss rates. The shown percentages always
relate to number of instruction reads, data reads, and data writes issues by the pro-
cessor (Ir/Dr/Dw). Therefore, “L2 rate” figures provide the rates of the full 2-level
hierarchy.

Using KCachegrind, it is interesting to select the derived “Cycle Estimation”, and
to compare the color distribution of the bars next to rowwise and columnwise
in the function list on the left. This gives an idea of how the time is spent on com-
puting phases (blue), on waiting for L1 (green) and waiting for L2 (red). On can see
that while columnwise shows a lot of L1 misses, L2 misses actually are lower
than for rowwise. Depending on cache size and latencies, the best function seems
to depend on the architecture. However, when adding the hardware prefetcher with
“–simulate-hwpref=yes”, the real advantage of rowwise becomes visible: all ac-
cesses can be prefetched (remember this is a best-case estimation).

5 Future Development

The cache simulator in Callgrind currently is extended to allow multi-core simula-
tion, with as many cache hierarchies as there are threads in a multi-threaded pro-

112 Josef Weidendorfer

double A[1000][1000];

double rowwise() { double columnwise() {
int i, j; int i, j;
double sum = 0.0; double sum = 0.0;

for(i=0;i<1000;i++) for(i=0;i<1000;i++)
for(j=0;j<1000;j++) for(j=0;j<1000;j++)
sum += A[i][j]; sum += A[j][i];

return sum; return sum;
} }

int main() {
int i, j; double sum1, sum2;

for(i=0;i<1000;i++) for(j=0;j<1000;j++) A[i][j]=1.0;

sum1 = rowwise();
sum2 = columnwise();
return (sum1 == sum2);

}

Fig. 5 Example code for Callgrind usage

gram. The main purpose is to see how the working set of the different threads relate
to each other. This knowledge could be used for core/thread bindings best exploit-
ing available resources. In additions, coherence issues like false sharing could be
detected. For KCachegrind, this needs adequate visualization.

For the Callgrind profile format, optional inclusion of assembly and source code
information is planned. Together with command line tools adding this information,
KCachegrind will not need to be run any longer on the same architecture (for pro-
ducing disassembly code / loading source code), and visualization of multiple code
versions (before/after optimization) will be easier.

For KCachegrind, quite some improvements are planned since long ago, which
we hope to implement soon. This includes issues such as providing a command line
version for simple merging/filtering of profile data, as well as a Qt-only version in
addition to the existing KDE version. From the functionality side, handling of more
complex formulas for derived events is planned as well as a comparison mode for
different measurements.

Acknowledgements Thanks to Julian Seward for the excellent runtime instrumentation frame-
work Valgrind, and to Nicolas Nethercote for Cachegrind, which Callgrind is based on.

Callgrind/KCachegrind 113

References

1. AMD: AMD SimNow Simulator.
http://developer.amd.com/tools/simnow/Pages/default.aspx

2. DeRose, L., Ekanadham, K., Hollingsworth, J.K., Sbaraglia, S.: SIGMA: A Simulator Infras-
tructure to Guide Memory Analysis. In: Proceedings of SC 2002. Baltimore, MD (2002)

3. Graham, S., Kessler, P., McKusick, M.: GProf: A Call Graph Execution Profiler. In: SIG-
PLAN: Symposium on Compiler Construction, pp. 120–126 (1982)

4. Intel: Intel VTune Performance Analyzer.
http://www.intel.com/cd/software/products/asmo-na/eng/
vtune/239144.htm

5. Knuth, D.: Structured Programming with go to Statements. ACM Journal Computing Surveys
6(4), 268 (1974)

6. Levon, J.: OProfile, a system-wide profiler for Linux systems.
http://oprofile.sourceforge.net

7. Nethercote, N., Seward, J.: Valgrind: A Framework for Heavyweight Dynamic Binary Instru-
mentation. In: ACM SIGPLAN 2007 Conference on Programming Language Design and
Implementation (PLDI 2007). San Diego, California, USA (2007)

8. Sun: Sun Studio 11: Performance Analyzer, Reference Manual (2005).
http://docs.sun.com/app/docs/doc/819-3687

9. Tao, J., Schulz, M., Karl, W.: A Simulation Tool for Evaluating Shared Memory Systems. In:
Proceedings of the 36th ACM Annual Simulation Symposium, pp. 335–342. Orlando, Florida
(2003)

10. Weidendorfer, J., Kowarschik, M., Trinitis, C.: A Tool Suite for Simulation Based Analysis
of Memory Access Behavior. In: ICCS 2004: 4th International Conference on Computational
Science, LNCS, vol. 3038, pp. 440–447. Springer (2004)

http://developer.amd.com/tools/simnow/Pages/default.aspx
http://www.intel.com/cd/software/products/asmo-na/eng/vtune/239144.htm
http://www.intel.com/cd/software/products/asmo-na/eng/vtune/239144.htm
http://oprofile.sourceforge.net
http://docs.sun.com/app/docs/doc/819-3687

Improving Cache Utilization Using Acumem
VPE

Erik Hagersten, Mats Nilsson and Magnus Vesterlund

Abstract The move to multicore offers a steep increase in compute power, while
little is done to improve the performance of the memory system. Typically, current
applications make poor use of the memory system and few developers have the in-
sight to fix such problems. Furthermore, the introduction of shared memory system
resources makes the picture even more complicated.

Acumem Virtual Performance Expert (VPE) automatically identifies wasteful
memory access behavior in applications and suggests improvements. About 20 dif-
ferent types of performance issues related to multi-threaded execution and cache
usage are identified and fixes are suggested at a level of detail allowing even novice
programmers to perform performance optimization requiring performance experts
today.

Among other things, Acumem’s technology suggests changes to make cache us-
age more efficient and to lower memory bandwidth requirements. Most of today’s
applications use less than half the data brought into the cache. If the applications
could be optimized to use memory efficiently, that would lower the cache miss fre-
quency substantially. Other parts of the application would then also benefit from
reduced cache pressure. Based on a small application fingerprint file collected from
native execution on a system the application’s performance on any memory system
can be analyzed and application improvements be suggested.

Erik Hagersten
Acumem, Uppsala, Sweden e-mail: erik@acumem.com

Mats Nilsson
Acumem, Uppsala, Sweden e-mail: mats@acumem.com

Magnus Vesterlund
Acumem, Uppsala, Sweden e-mail: mve@acumem.com

115

erik@acumem.com
mats@acumem.com
mve@acumem.com

116 E. Hagersten, M. Nilsson, M. Vesterlund

1 Introduction

It is a complex and challenging task to take full advantage of today’s high perfor-
mance computer architectures. Their deep memory hierarchies make it difficult to
reach the full performance potential, even for the most astute application program-
mer. Due to the wide and ever increasing memory gap, processors often devote more
than half of their time waiting for data to arrive from memory or are stalled due to
a congested memory bus. This problem has become worse with the introduction of
multicore processors [3]. More concurrent threads contend for the same memory bus
bandwidth, and for highly threaded CPUs, the cache size per thread has been seen
to decrease. These effects are generally considered to remain the major bottlenecks
for many years to come.

Rewriting an application to avoid such bottlenecks requires powerful and in-
sightful performance tools. Until now, performance tools forced developers to wade
through a mass of data before they get any idea where the performance problems
are. Essentially, the major part of the task – that of identifying and locating bottle-
necks – is still the responsibility of the developer. Even then, the process requires as
much black art as engineering skill. And perhaps worst of all, it is quite possible to
spend a great deal of time trying to identify and fix problems without any guarantee
at the outset that there will be any significant performance boost to your application
even when the process is completed.

This paper introduces a fresh approach to the problem with a new generation
of performance tools based on Acumem’s unique fingerprint analysis technology.
An application fingerprint is collected at runtime and an off-line analysis can draw
conclusions about the applications behavior. This process supports the positive iden-
tification and location of application Slowspots and provides suggestions on how to
fix them.

This allows the developer to locate and quantify performance problems quickly
and simply, displaying a ranking of the potential performance boost for each
identified Slowspot. As a result, the productivity of the development process in
performance-critical applications is greatly increased, since the developer is pre-
sented with an effective cost/benefit analysis of the optimization work. It is of great
benefit both to the novice programmer, who is provided with the support to per-
form advanced optimizations, and also helps the performance expert become more
productive by delivering a much higher level of analysis compared to previous tools.

This paper will describe how a new generation of performance analysis tools will
automatically identify and locate memory bandwidth-hungry behavior and wasteful
cache usage, the two most common problems in performance-critical applications
running in multicore environments. It will describe the underlying technology that
delivers this breakthrough insight and highlight the key new benefits it will bring to
application developers in data-intensive application development.

Improving Cache Utilization Using Acumem VPE 117

1.1 It’s the Memory, Stupid!

One of the greatest enemies of performance enhancements in the past has been the
relatively slow improvement of memory latency [4]. While the processing power
of a CPU has become about 4000 times faster compared to 25 years ago, the ac-
cess time at which data is read from DRAM memory has only improved about four
times [1], that is, this so-called memory gap to has grown about 1000 times over this
period! This problem is sometimes referred to as the memory wall. Unless the over-
head of memory accesses in a data-intensive application can be hidden, the memory
accesses will completely dominate the execution time and swamp all other efforts
to get performance improvements.

In order to address this memory gap, several levels of caching have been intro-
duced over the years. A cache is a relatively small and fast memory containing a
subset of the data present in memory. The cache levels range from a smaller and
faster cache (L1), residing close to, and with speeds matching that of the CPU, to
larger and somewhat slower caches (L2 and L3) designed to hold larger amounts
of data on chip. There is one common objective – performance-limiting accesses
to the DRAM must be avoided wherever possible! Following this objective, each
new CPU technology generation has historically increased the cache capacity. As a
result, the cache capacity devoted to each active thread has generally increased over
the last few decades.

In order to effectively take advantage of the fast caches a program must exhibit
good data locality. Once a cache line is brought into the cache it should be reused
as much as possible before it is evicted again. Since data is brought into the cache
in chunks, data that is used at the same time should also be located close together in
memory.

Unfortunately, compilers do not address this problem well, as they are instruction
centric and typically do not have enough information about data usage available at
compile time. For such dynamic data situations the compiler doesn’t have enough
information, and it is up the programmer to optimize data layout and access patterns
to fully leverage the underlying processors’ cache.

While locality and its benefit to application performance is widely acknowl-
edged, a typical programmer does not necessarily understand how to write appli-
cations to fully exploit these locality properties. Furthermore, there is to date no
good way of measuring and reporting this information for an application. This also
makes it very difficult for the programmer to measure how well their code has been
optimized with respect to these properties.

1.2 Multicore Exacerbates the Memory Problem

Over the past couple of years, CPU frequencies have not improved much; instead,
several CPU cores are put on each chip to improve the system performance. These
so-called multicore CPUs have the potential to deliver an improvement in execution

118 E. Hagersten, M. Nilsson, M. Vesterlund

capability, but unfortunately the memory interface speed has not kept up. And in
data-intensive applications, this is where the performance bottlenecks are likely to
be found. The many separate cores have to share the cache capacity of the chip in
one way or another. In some implementations, all cores share one common cache
at the highest cache level and will have to fight for cache space at execution time.
In other implementations, the cache capacity is statically divided between the cores.
Furthermore, some CPU implementations allow each core to host several execution
threads which reduces the cache capacity per active thread even further [5].

2 Throughput Study of SPEC CPU 2006

It is quite easy to assess how much the system throughput really improves if you
utilize all four cores of a quad core system compared with if just one is utilized.
Actually, all the needed experimental data are readily available on the web.

The SPEC organization is chartered to collect a representative set of applications
to be used in comparison between different hardware and software components. The
current set of CPU applications is a collection of 29 widely used applications from
different areas.

The applications are divided into the two groups: integer and floating point, de-
pending on what kind of CPU arithmetic’s they most commonly use. The SPEC
CPU applications can be run in two different ways: Either just a single application
is run and the execution time is measured (here referred to as ordinary runs), or
several instances of each application are run simultaneously and the total time is
measured, referred to as rate runs.1

Among the thousands of official numbers published on the SPEC organization’s
web page (www.spec.org), some of the quad core systems are reported both
for ordinary runs and rate runs. It is thus quite easy to compute the throughput
improvement for each of the 29 applications enjoy when all four cores are used
instead of just one.

Fig. 1 and Fig. 2 show the result of such a comparison of Intel’s fastest numbers
reported during Q1 2008. The studied system has a Intel Core2 Quad 9550 CPU
with 12 MB L2 cache, running at 2833 MHz and connected to a 1333 MHz FSB.

These figures show the relative throughput for each application when running on
four cores instead of one. If there was no major competition for the shared caches
and memory bandwidth, we should expect the relative throughput to be close to
four. As can be seen for the floating point applications, only 8 of the 17 applications
experience a relative throughput improvement of more than 2.5. The application
with the worst scalability is 470.lbm.

The integer application seem to perform much better. Here, 9 out of 12 appli-
cations experience a throughput improvement larger than 2.5. Still it is a bit disap-

1 It should stressed that the SPEC rate numbers in no way report the performance of a parallel
version of the application, since independent copies of each application is run at the same time, not
one parallelized copy.

www.spec.org

Improving Cache Utilization Using Acumem VPE 119

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

4,00

41
0.

bw
av

es

41
6.

ga
m

es
s

43
3.

m
ilc

43
4.

ze
us

m
p

43
5.

gr
om

ac
s

43
6.

ca
ct

us
AD

M

43
7.

le
sl

ie
3d

44
4.

na
m

d

44
7.

de
al

II

45
0.

so
pl

ex

45
3.

po
vr

ay

45
4.

ca
lc

ul
ix

45
9.

G
em

sF
DT

D

46
5.

to
nt

o

47
0.

lb
m

48
1.

wr
f

48
2.

sp
hi

nx
3

Re
lat

ive
 th

ro
ug

hp
ut

Fig. 1 SPEC 2006 Floating point applications: Relative throughput on four cores compared to one
core. 4.0 is linear scalability

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

4,00

40
0.

pe
rlb

en
ch

40
1.

bz
ip

2

40
3.

gc
c

42
9.

m
cf

44
5.

go
bm

k

45
6.

hm
m

er

45
8.

sj
en

g

46
2.

lib
qu

an
tu

m

46
4.

h2
64

re
f

47
1.

om
ne

tp
p

47
3.

as
ta

r

48
3.

xa
la

nc
bm

k

Re
lat

vie
 th

ro
ug

hp
ut

Fig. 2 SPEC 2006 Integer applications: Relative throughput on four cores compared to one core.
4.0 is linear scalability

pointing that almost half of the applications do not reach the 3.0 mark. Here, the
worst application is 462.libquantum.

We can conclude that there are huge throughput and scalability problems for the
large set of representative applications collected by the SPEC organization.

120 E. Hagersten, M. Nilsson, M. Vesterlund

3 First Generation Performance Tools Based on Hardware
Counters

There are plenty of so-called performance analysis tools available today. Unfortu-
nately, few of them perform any real analysis. Many of them are based on hardware
counters, which count specific events taking place inside the processor. These hard-
ware counters can for example count the number of cache accesses and the number
of cache misses for each cache level.

Some of the more advanced tools can more or less accurately tell to what degree
each source code line contributes to the different event counts.

Since only a limited number of hardware counters can be monitored during a
single run, the same execution may have to be accurately repeated several times in
order to gather all data. Some tools require the same execution to be repeated up to
37 times to fully collect all the counter information.

Based on hardware counter values, derived properties can be computed. One such
interesting derived property is cache miss ratio, which is the ratio of data requests
that are not found in the cache. Just like the case of hardware counter values, the
derived values can also be mapped to individual source code lines with some preci-
sion.

3.1 A Core Dump of Hardware Counter Values – Now Go Figure!

Such a breakdown of, say, miss ratio, tells the programmer about the locations
of hotspots, but doesn’t tell anything about what the underlying problem is, nor
whether the problem can be addressed.

In short, these tools simply gather cache miss information from the hardware
counters and dump them into the lap of the programmer. They give you the haystack,
and all you have to do is to find the needle.

Interpreting such data requires a high level of expertise in performance analysis
on the part of the programmer, as well as a considerable amount of time and ef-
fort. First of all, identifying the nature of the cache misses requires a lot of skill.
While some cache misses are unnecessary and can easily be avoided by minor mod-
ifications to the source code, others can be required by the overall algorithms and
are necessary for bringing the data to the cache. The existing hotspot identification
techniques can not help you tell one kind of miss from the other.

The source code line that is associated with the hotspot typically contains several
memory accesses and it is not obvious which one is to blame, nor is it obvious
what modification to the code, if any, would give you a performance improvement.
Also, understanding the necessary code changes is often non-trivial. Furthermore,
no information is provided on what the potential performance gain would be.

Improving Cache Utilization Using Acumem VPE 121

3.2 Incomplete Analysis of Bandwidth Usage

Most CPUs today rely on hardware prefetching to avoid cache misses. The au-
tonomous hardware prefetch logic monitors the memory access pattern of the ap-
plication, anticipates what data will be requested in the near future and brings them
into the cache before they are needed.

In many programs more than half the memory bandwidth is consumed by hard-
ware prefetching. Hardware counter-based performance tools cannot pinpoint the
source of this memory traffic, since it is not initiated by a specific instruction.

3.3 Profilers and Simulators

Other tools used for performance analysis are profilers and simulators. Profilers
typically use some sampling technology to deduce where in the code an application
spends most of its time. The programmer is presented with for example the top ten
functions where the execution time is spent, but is given no explanation of why
the time is spent there. The programmer will be given limited or no performance
information, and will not get any clear guidance on how the code can be improved.

Simulators could potentially give much more insight into the behavior of an ap-
plication, but these systems typically lack the necessary additional tools to perform
this analysis. Furthermore, simulators are far too slow to study the execution of
data-intensive applications running full-sized data. Studying an application running
reduced data sets will result in incorrect conclusions when it comes to modern mem-
ory systems, since the behavior of a cache varies drastically with the application’s
input data set.

3.4 The Need for a New Generation of Performance Tools

The realization that efficient cache usage is essential for multicore performance and
that the low abstraction level offered by current tools cannot provide a productive
development environment for data-intensive applications, led to the development of
the new performance analysis technology by Acumem. Another driving force was
the incomplete bandwidth analysis in existing tools – an absolute must for multicore
performance analysis!

A key objective was to create a tool that could automatically perform as much
of this analysis as possible, since the vast amount of data and the analysis of data
interdependences is difficult to process manually. We need the tool to tell us how
efficiently we are currently using our memory system and its caches, and identify the
specific Slowspots in the code where improvements are possible. We need guidance
on how the Slowspots can be rewritten to improve performance. We need metrics
and efficiency data to help us working on the Slowspots in the most optimal order,

122 E. Hagersten, M. Nilsson, M. Vesterlund

as well as measuring the level of improvement from code changes as we go. Last,
but not least, we need to the tool to be fast enough to provide a short turn-around
time even when running with full-sized input data.

4 Enter: The New Performance Tool

The fingerprint analysis technology developed by Acumem, based on a completely
new approach [2], will deliver all of these capabilities and more. First of all, an
application fingerprint is gathered from normal execution on a host computer at
runtime. The collected information is very sparse, but contains rich dynamic infor-
mation. The fingerprinting does not rely on hardware counters, since they do not
provide enough information. For example, the fingerprint collection may collect in-
formation roughly once in every one millionth operation during one execution run.
The information allows the analysis to answer questions such as: When will this
data be accessed again and by whom? What is the loop structure around these oper-
ations? In what context were the operations called? How likely is it that a hardware
prefetcher will be able to kick in?

The fingerprint collection is performed on unmodified binaries in a language-
agnostic way and works with code produced by literally any compiler. Since the
information is collected sparsely, the execution overhead can be kept at a minimum,
despite collecting this rich information. Fingerprints from single-threaded as well
as multi-threaded execution are collected in a completely transparent way. In fact,
the fingerprint collector can attach to an already running process with many threads,
collect data for a while and then detach from the process, which will continue its
execution undisturbed. The application fingerprint information is captured in a file
of typically a couple megabytes size, regardless of the execution time. The longer
the execution, the more sparsely it can collect information.

The application fingerprint is not limited to information about what happened
on the very piece of hardware where the fingerprint was collected. The collected
information is processor and memory architecture independent. It is not affected
in any way by the cache organization of the host computer. Instead, it captures the
locality properties of the binary which is the product of the source code, the compiler
used to compile it and the input data set used to run the application. This enables a
fingerprint collected on a specific architecture to be used to analyze the application’s
behavior on a completely different architecture with a very different memory system
– previously only possible using simulation technologies. Contrary to techniques
based on simulation, the efficiency of the fingerprint capture allows for full-sized
input datasets which is essential for studying real-world problems.

The fingerprint is then analyzed off-line using statistical methods. Target archi-
tecture parameters tell the analysis software about the architecture for which to give
advice. These involves parameters such as cache sizes, cache line sizes, TLB page
sizes and replacement policy in the caches. By varying these parameters, the finger-
print collected on one architecture can be used to suggest application enhancements
with respect to a completely different architecture.

Improving Cache Utilization Using Acumem VPE 123

This novel approach, based on sparse fingerprints and statistical analysis, enables
Acumem VPE to provide much richer and more precise feedback to the user than
the more limiting and traditional hardware-counter approach. It can not only iden-
tify the exact operations that cause misses in a cache system or those instructions
that waste memory bandwidth, it can also tell the reason for the misses and suggest
possible fixes, if there are any. Acumem VPE can also often estimate the potential
performance gain, which is very helpful in determining if a fix to an issue should be
attempted.

A Slowspot is a piece of code with an identified performance problem that can
be improved in a way that would result in a substantial performance gain.

For each Slowspot, the tool reports the nature of the inefficiency and the set
of suggested fixes to the application. The analysis can also estimate the overall im-
provement if all Slowspots were fixed, as well as estimate the potential improvement
for each individual Slowspot.

The analysis technology can do a lot more than just assist in performance op-
timization. For example, when planning a possible move to new processor archi-
tectures, it can also provide a performance comparison for the existing code for a
range of candidate processor architectures based purely on analysis performed by
running the existing application code on the current system. It can even identify the
Slowspots and how to address them for this future processor architecture.

4.1 Slowspot Insights

For each identified Slowspot, the improvement potential is assessed, answering
complex questions such as; What fraction of the total cache misses would be avoided
if I fixed this Slowspot? How much would my memory bandwidth requirement de-
crease? These numbers can be a quick guide when choosing the Slowspot to attack
first. Other performance insights provided by the technology will further enable a
more systematic way of improving application performance. A typical approach
could include the following steps:

1. The Slowspots caused by ineffective cache line utilization can be assessed and
corrected.

2. Slowspots with data reuse opportunities can be identified and fixed to avoid cache
misses by maximizing reuse of data in the cache.

3. Slowspots, where the hardware prefetcher is unlikely to be effective can be as-
sessed, and alternative algorithms or data placement methods can be selected.

4. Useless instructions can be identified and removed.
5. The technology can guide the insertion of software prefetch instructions for re-

maining places causing cache misses not avoidable by other means

124 E. Hagersten, M. Nilsson, M. Vesterlund

4.2 Improving Cache Line Utilization

Even though the caches play such an important role for performance, most applica-
tions devote more than half of the cache capacity to store unused data, that is, more
than half of the data brought into the cache is not ever used before it is replaced.
This is a fact most programmers seem blissfully ignorant of.

Acumem VPE introduces the term cache line utilization to indicate the fraction
of the data brought into the cache which is actually used. Poor cache line utilization
implies that the application is wasting both memory bandwidth and cache space. An
examples of this is a cache line of 64 bytes brought into the cache of which only
one word of 8 bytes is needed, that is, a cache line utilization of 12.5%. Poor cache
utilization is a prime example of Slowspot behavior.

Following the tool’s guidance and rewriting the program in a way that improves
the cache utilization would have three positive effects:

1. Cache misses would occur less often, since each cache miss would now bring in
more pieces of useful data.

2. The amount of data an application moves across the memory bus would decrease.
3. The system would behave as if there were more cache available after the rewrite,

since the same amount of useful data can now fit in a smaller part of the cache.
This will allow for even more popular data to reside in cache, which can further
reduce the cache miss ratio and the amount of data moved to/from the memory.

The analysis can not only find poor cache line utilization for data brought into the
cache by cache misses, but also for data retrieved by hardware prefetching as well
as by software prefetch instructions. The analysis will associate these Slowspots
with the source code lines consuming the retrieved data and suggest how the can be
rewritten.

There can be many different reasons for poor cache line utilization, some of
which are described below:

Table 1 Examples of reasons for poor cache line utilization

Reason Description

Loop interchange A multidimensional data structure is traversed in a non-optimal di-
mension order (a.k.a. incorrect loop nesting)

Sparse data allocation The data allocation creates a data structure with unused holes.
Sparse data usage A loop only uses every nth data element of a data structure, for

example, only accessing one member of a combined data structure,
such as a “struct”.

Random access pattern Pointer-based or tree-based accesses may access the data space in a
random manner.

The analysis can often identify the reason for the poor cache line utilization for
each Slowspot. It can also identify the data structure that is involved with each spe-
cific Slowspot. The analysis can report the average cache line utilization for the

Improving Cache Utilization Using Acumem VPE 125

entire application, for each loop and for each Slowspot. The analysis could also cal-
culate the potential memory traffic reduction if the cache utilization was improved.

It is interesting to note that applications with poor cache behavior often have
poor cache utilization. This is fortunate, since fixing poor cache utilization is often
a fairly simple task, once the location and nature of the problem is known. About
70% of the SPEC CPU2006 benchmarks with a high cache miss ratio have a cache
utilization of 50% or lower. Some of them have cache utilization as low as 10-
20%! Improving cache utilization from 50% to 100% would generally result in an
execution with less than half as many cache misses and make less than half as many
accesses across the memory bus bottleneck. Our experience shows that this can more
than double throughput in a multicore system.

4.3 Data reuse Opportunities

Another example of Slowspots identifiable by analysis concerns data reuse. Often,
applications repeatedly access the same data structure over and over again, but the
accesses are so far apart that the data has been replaced in the cache prior to its
reuse. It may be that different rewriting techniques can be used to move the data
reuse closer in time to allow for the data to remain in the cache at the point of reuse.
Identifying such opportunities requires a global view of when the data structure is
accessed, the cache behavior and the existence of any data-dependent accesses that
would prevent such a rewrite. Acumem’s technology can perform all these three
steps automatically and identify Slowspots with probable data reuse opportunities.

Table 2 Examples of data-reuse Slowspots

Slowspot Description

Tiling (a.k.a. blocking) A loop is reusing data, but by the time the reuse occurs data has
already been evicted from the cache. By processing a smaller piece
of the data set at a time the data can be reused while it is still in the
cache.

Temporal loop fusion Two different loops are using the same data. By merging the loops
the data only read into the cache once.

Spatial loop fusion Two different loops are using data from the same cache line. By
merging the loops the data only read into the cache once.

4.4 Guiding Prefetch Instruction Insertion

Most architectures provide software prefetch instruction, allowing for a compiler
or a programmer to explicitly bring a piece of data into the cache prior to its use.
Correctly inserted software prefetch instructions can help remove cache misses for
which there is no other apparent fix.

126 E. Hagersten, M. Nilsson, M. Vesterlund

Slowspots related to prefetch instructions that can be diagnosed by the analysis
include:

• A prefetch instruction executed too far ahead of actual data use will not help
performance since the data will get replaced before the use. Instead it will hurt
performance by bringing in the cache line an extra time and thereby wasting
memory bandwidth.

• A prefetch instruction executed too close to the actual data use will not provide
the full benefit, since the processor does not have time to finish the fetch before
the data is needed. The distance between the prefetch and the data use should be
increased to give the process more time to finish the fetch.

• A prefetch instruction that repeatedly tries to bring in data that is already present
in the cache is harmful to performance since it will use up execution resources
without doing any useful work.

5 Utilization Study of the Worst SPEC CPU 2006 Applications

The importance of good cache line utilization can be demonstrated by looking at
some curves collected from the worst SPEC CPU FP and the worst SPEC CPU INT
applications.

Fig. 3 shows how the fetch ratio (solid red) for the libquantum application
changes as a function of cache size. For a system with a total of 12 MB L2 cache run-
ning four instances of this application, such as the system used for our throughput

0,0%

0,5%

1,0%

1,5%

2,0%

2,5%

3,0%

3,5%

4,0%

4,5%

5,0%

128k 256k 512k 1M 2M 4M 8M 16M 32M 64M 128M 256M

Fe
tc

h
ra

tio

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
Ca

ch
e

lin
e

ut
ili

za
tio

n

Fetc h rat io
Utiliz at ion c orrec ted fetc h rat io
Cac he line ut iliz at ion

Fig. 3 Cache characteristics of the integer application 462.libquantum. Fetch ratio scale to the left,
cache line utilization scale to the right

Improving Cache Utilization Using Acumem VPE 127

analysis, each instance of the libquantum would get 3 MB of cache and according
to the diagram have a fetch ratio close to 4%. This means that 4% of all memory
accesses would cause data to be fetched from memory, either directly or through
prefetching.2

This is enough to saturate the memory bus, resulting in poor scalability when
running multiple instances on a multicore processor. The poor cache line utilization
of the application, shown by the dashed black curve, is a strongly contributing factor.
It shows that only half of the available cache capacity is used for 3 MB cache (the
scale is to the right of the chart). The red dotted red curve shows the estimated fetch
ratio if the application is rewritten in a way that improves the cache line utilization
to 100%. At 3 MB, the pressure on the memory bus would be cut by more than a
factor two down to a miss ratio of 1.9%.

Fig. 4 shows a similar graph for the worst floating point application from the
throughput study: 470.lbm. Once more, we see a fetch ratio in the 4% range and
cache line utilization close to 50% for a 3MB cache. Fixing the cache line utilization
would almost save a factor two on the memory bandwidth, reducing the fetch ratio
from 4.2% down to 2.1%.

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

8k 16k 32k 64k 128k 256k 512k 1M 2M 4M 8M 16M

Fe
tc

h
ra

tio

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Ca
ch

e
lin

e
ut

ili
za

tio
n

Fetc h rat io
Utiliz at ion c orrec ted fetc h rat io
Cac he line ut iliz at ion

Fig. 4 Cache characteristics for the floating point application 470.lbm. Fetch ratio scale to the left,
cache line utilization scale to the right

2 The term miss ratio is reserved for the fraction of accesses that would cause memory to be
fetched, but for which a prefetcher would be ineffective, meaning that those accesses would also
cause a CPU stall in addition to consuming memory bus bandwidth.

128 E. Hagersten, M. Nilsson, M. Vesterlund

6 Tuning Example: 179.art

179.art is an application included in the SPEC CPU 2000 benchmark suite. It is an
excellent demonstration application for performance analysis since it is guilty of
almost all the performance mistakes in the book.

6.1 Obtaining the Fingerprint

The first step is to obtain the fingerprint. Assuming a default installation and a PATH
environment variable properly setup, type:

$ sample -o art.smp -r ./art [parameters to art]

This starts the application and attaches the fingerprint collector from the very
start. In this mode, it will continue to collect fingerprint data until the program ter-
minates normally, after which some postprocessing of the fingerprint will take place.

There are many different command line options to control when and how to start
and stop collecting data to cover the part of the program you are interested in. It
is often sufficient to let the collector run during just a representative subset of the
applications execution. As collecting a fingerprint adds to the execution time, it is
useful to quickly be able to get a coarse report from a limited fingerprinting.

6.2 Preparing a Report

The fingerprint is now in the file art.smp. It contains representative information
for the application and data set, independent of the current memory hierarchy. When
preparing the report, we also add information about the cache for which we want to
tune performance.

$ report -i art.smp -o art-report -c 512k

The report command prepares a report for a target cache of 512 kbytes. The
report will list those issues that are relevant for this particular cache size. Varying
cache parameters will give different reports, as different problems are exposed on
different architectures.

Bring up the report using your web browser:

$ firefox art-report.html

Improving Cache Utilization Using Acumem VPE 129

6.3 Interpreting the Report

Fig. 5 shows one page from the report. It is divided into three sections. The top left
section is for summaries and tables of issues and loops. The bottom left section is
for loop and issue details. The larger section to the right is for displaying annotated
source code.

The top latency Slowspot for this case indicates that a data structure suffers from
inefficient loop nesting, i.e., it is traversed along the wrong dimension in the inner-
most loop. Acumem VPE helps identifying the variable bus in the following code
snippet:

f o r (t j = 0 ; t j < numf2s ; t j ++)
{

Y[t j] . y = 0 ;
i f (!Y[t j] . r e s e t)

f o r (t i = 0 ; t i < numf1s ; t i ++)
Y[t j] . y += f 1 l a y e r [t i] . P * bus [t i] [t j] ;

}

The problem is that the loops iterate over the bus matrix in the wrong direction,
along the columns instead of along the lines. The means that only one element from
each cache line is used in each iteration in the inner loop. The matrix contains more

Fig. 5 Screen shot of Acumem VPE showing the worst latency Slowspot (Inefficient loop nesting)
and the corresponding source code

130 E. Hagersten, M. Nilsson, M. Vesterlund

lines than fit in the cache, so by the time the iteration starts over from the top of the
matrix those cache lines have already been evicted, causing every memory access
to miss in the cache. Changing the way bus is accessed by transposing it fixes this
problem. The actual for statements will remain intact in this case, but in other
cases it makes more sense to reorder the loop statements. Acumem VPE also gives
a prediction on how many fewer memory fetches this application will perform after
fixing this problem (30%).

Fig. 6 Acumem VPE report for the Slowspot inefficient loop nesting

Incidentally, there is something else wrong with this line. The second bandwidth
related Slowspot tells us that the cache line utilization of f1 layer[ti].P is
poor, and not every byte is used in the cache lines where this data is stored. In fact,
it tells us that about 8 out of 64 bytes (13.7%) in each cache line is ever used in this
loop before that cache line is replaced in the cache with some new data.

Improving Cache Utilization Using Acumem VPE 131

The problem is that only one field (.P) is ever used in this loop, but there are
several other fields of this structure occupying adjacent memory locations. Acumem
VPE estimates that 26% of the application’s memory traffic can be avoided by pack-
ing this data differently. The fix is to replace the use of an array of structs with
separate arrays for each of the struct’s fields.

This particular code section was changed to read:

f o r (t j = 0 ; t j < numf2s ; t j ++)
{

Y[t j] . y = 0 ;
i f (!Y[t j] . r e s e t)

f o r (t i = 0 ; t i < numf1s ; t i ++)
Y[t j] . y += f 1 l a y e r P [t i] * bus [t j] [t i] ;

}

Fig. 7 Acumem VPE report for the cache line utilization Slowspot

132 E. Hagersten, M. Nilsson, M. Vesterlund

After fixing these and similar problems througout the code, this program ran 6
times faster on an AMD Athlon 64 X2 3800+ processor.

7 Tuning Example: Revisiting the Throughput Applications

Much like the tuning of 179.art, both of the misbehaving throughput applications
462.libquantum and 470.lbm experience huge improvements based on the sugges-
tions pointed out by Acumem VPE.

For instance, the top Slowspot in 462.libquantum is presented by Acumem VPE
like this:

Fig. 8 Top Slowspot in 462.libquantum

Again this is a case of accessing just one field in a struct. Fixing this problem
throughout the application (changing approximately 40 lines of code, separating the
fields of the struct into different arrays) causes the scalability to be greatly improved.

Improving Cache Utilization Using Acumem VPE 133

In 470.lbm the way a three dimensional structure was allocated led to a hard to
spot invalid loop order. Just eleven lines were changed in a set of macros to fix this
issue.

In Fig. 9 and Fig. 10 the result of these optimization can be seen. For both these
applications, cache line utilization were improved to close to 100%, and the result-
ing fetch ratio approached the fetch ratio predicted in Fig. 3 and Fig. 4.

0,0%

0,5%

1,0%

1,5%

2,0%

2,5%

3,0%

3,5%

4,0%

4,5%

5,0%

128k 256k 512k 1M 2M 4M 8M 16M 32M 64M 128M 256M

Fe
tc

h
ra

tio

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Ca
ch

e
lin

e
ut

ili
za

tio
n

Fetc h rat io
Utiliz at ion c orrec ted fetc h rat io
Cac he line ut iliz at ion

Fig. 9 Characteristics of corrected integer application 462.libquantum

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

8k 16k 32k 64k 128k 256k 512k 1M 2M 4M 8M 16M

Fe
tc

h
ra

tio

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
Ca

ch
e

lin
e

ut
ili

za
tio

n

Fetc h rat io
Utiliz at ion c orrec ted fetc h rat io
Cac he line ut iliz at ion

Fig. 10 Characteristics of corrected floating point application 470.lbm

134 E. Hagersten, M. Nilsson, M. Vesterlund

We compared the execution time of the original and modified versions of the two
applications on a Intel Core2 Quad Q6600 2.4GHz, 1066MHz FSB, equipped with
800 MHz DDR2 RAM.

Fig. 11 Scalability comparison of original and optimized versions of applications 470.lbm and
462.libquantum

8 Conclusion

Historically, performance analysis tools have performed surprisingly little analysis,
and have not done a great deal for performance either, at least not without major
expenditure of time and effort on the part of the developer of data-intensive ap-
plications. This chronic problem is becoming even worse with the introduction of
multicore processors.

Acumem’s VPE fingerprinting technology provides a fundamentally different ap-
proach to the problem. Firstly, an unprecedented level of detailed information is
provided on application performance across a range of processor architectures. Sec-
ondly, the detailed analysis is done by the VPE tool, rather than by the developer,
providing the location and nature of specific performance Slowspot in the code.

Improving Cache Utilization Using Acumem VPE 135

References

1. Hennessy, J.L., Patterson, D.A.: Computer Architecture – A Quantitative Approach. Morgan
Kaufmann Publishers, San Francisco, USA (2007)

2. Berg, E., et al.: Fast Data-Locality Profiling of Native Execution. Proceedings of the Inter-
national Conference on Measurement and Modeling of Computer Systems, Banff, Alberta,
Canada (2005)

3. Hammond, L., et al.: A Single-Chip Multiprocessor. IEEE Computer 30(9): 79-85 (1997)
4. Fernandes, E.S.T., et al.: Instruction usage and the memory gap problem. In Proceedings of

14th Symposium on Computer Architecture and High Performance Computing 2002
5. Karlsson, M., et al.: Conserving Memory Bandwidth in Chip Multiprocessors with Runahead

Execution. In Proceedings of IPDPS 2007

Parallel Performance Analysis Tools

The Vampir Performance Analysis Tool-Set

Andreas Knüpfer, Holger Brunst, Jens Doleschal, Matthias Jurenz, Matthias
Lieber, Holger Mickler, Matthias S. Müller, and Wolfgang E. Nagel

Abstract This paper presents the Vampir tool-set for performance analysis of par-
allel applications. It consists of the run-time measurement system VampirTrace and
the visualization tools Vampir and VampirServer. It describes the major features and
outlines the underlying implementation that is necessary to provide low overhead
and good scalability. Furthermore, it gives a short overview about the development
history and future work as well as related work.

1 Introduction

Performance analysis is an important part in the development and optimization of
parallel High Performance Computing (HPC) applications. In order to achieve close
to optimal performance one needs to understand the dynamic run-time behavior
in detail. In particular, on today’s more and more complex hardware architectures
including multi- and many-core CPUs and growing hierarchies of caches as well as
local and remote main memory.

Therefore, it is relying on sophisticated tools in order to give the user insight
about fast, complex, and highly parallel dynamic run-time behavior.

This paper gives an overview about the Vampir tool family which is widely
known in the national and international HPC community. It consists of the instru-
mentation and measurement component VampirTrace and the visualization applica-
tions Vampir and VampirServer. The most important established and new features
of both components will be presented.

VampirTrace was originally forked from the KOJAK trace library [17] and is
available as open source software under a BSD license. The visual analysis tool
Vampir has a history of over 12 years. Starting at FZ Jülich it is now being devel-
oped at ZIH, Technische Universität Dresden. VampirServer, which is the parallel

Andreas Knüpfer
ZIH, TU Dresden, 01062 Dresden, e-mail: andreas.knuepfer@tu-dresden.de

139

andreas.knuepfer@tu-dresden.de

140 Andreas Knüpfer et al.

successor of Vampir, was first released in 2003. Vampir has always been a commer-
cial product, formerly distributed by Pallas GmbH, today both versions, Vampir and
VampirServer are commercially available via the GWT mbH Dresden.

The rest of the paper is organized as follows: After an introduction to profile-
based and trace-based performance analysis the three main parts cover instrumenta-
tion of user applications, run-time measurement and visual analysis. Finally there is
an overview on related work. Then conclusions are given together with an outlook
to current and future development.

2 Performance Analysis via Profiling or Tracing

Performance analysis and optimization of applications are important phases of the
development cycle. Like testing and debugging it should be imperative, at least for
High Performance Computing (HPC) applications. It is an important precondition to
guarantee efficient usage of expensive and limited computing resources in general.
This means obtaining the results with minimum resource usage and costs.

Furthermore, it is important for scalability, i.e. being able to achieve the next
bigger simulation with the given resources. For that, it is particularly important to
exploit as much of the theoretically available performance as possible.

The task of the performance analysis phase is firstly, to measure the actual per-
formance on a given platform in terms of computing speed or throughput as well
as resource consumption in terms of run-time or memory requirement or storage
space. Secondly, performance analysis has to identify opportunities for performance
improvement or reduction of resource usage.

Like debugging, i.e. error analysis, the process of performance analysis is inher-
ently difficult and human users profit much from tool support. Ignoring tools alto-
gether in favor of manual printf -like performance analysis is strongly inadvisable
from the point of view of software engineering, overhead, scalability and usability.

There are two well known approaches for sequential and parallel performance
analysis tools: profiling and tracing. In general, profiling collects aggregated infor-
mation about certain events during a program run, whereas tracing records informa-
tion about individual events. The events are simply points of interest in the course
of program execution. The most common event types are:

• enter and leave, i.e. call and return of functions or subroutines
• send and receive, i.e. point-to-point message passing operations
• collective communication operations as known from the MPI standard
• performance counter samples, that provide a scalar value at a point in time

Information about events allow to infer about application flow like function calls
(or general basic blocks), communication or other activities relative to individual
processes or threads. With profiling it is possible to collect summarized information
about function calls etc. over the total program run-time or separated for certain

The Vampir Performance Analysis Tool-Set 141

phases of it [4, 6, 14, 20]. Typically, this includes total run-time per function, number
of calls and the call tree, i.e. caller-callee relations between functions.

On the other hand, tracing records all individual events along with general prop-
erties like exact time stamp and the particular process or thread as well as further
event type specific properties. Thereby, tracing allows to investigate single events.
This enables trace-based tools to identify variation in the dynamic behavior of a
single function over many iterations, which profiling could not detect. Furthermore,
profiles can be computed from traces but not vice versa. This comes to the price of
larger result data sets and increased overhead.

Both approaches, profiling and tracing, require modification of the target appli-
cation in order to detect event occurrences. This step, which is also called instru-
mentation, follows the same principles for both methods.

3 Instrumentation with VampirTrace

There are several ways for instrumentation of target applications which are more or
less suited for different programming constructs and different event types. Vampir-
Trace allows automatic instrumentation for the following programming paradigms:

• sequential programs,
• MPI programs,
• OpenMP programs and
• hybrid MPI and OpenMP programs.

The most prominent ways of instrumentation used by VampirTrace are:

• compiler instrumentation,
• source-to-source instrumentation,
• library instrumentation and
• manual instrumentation

which are performed at build time. The VampirTrace instrumentation software pro-
vides convenient compiler wrappers that take care of most instrumentation details.
Similar to the well known MPI compiler wrappers, they refer to underlying plat-
form compilers for code generation. At the same time, command line parameters
are added (e.g. for instrumentation), additional libraries are linked (e.g. the mea-
surement library) or further commands are executed during the normal build pro-
cess (e.g. pre-processing the source files for automatic source-to-source instrumen-
tation).

From the user perspective this requires merely replacing compiler commands,
for example in corresponding Makefiles like the following:

CC= gcc CC= vtcc
CXX= g++ CXX= vtcxx
F90= gfortran F90= vtf90

142 Andreas Knüpfer et al.

The compiler wrappers will select the instrumentation method suitable for the
particular platform and the specific instrumentation options for the underlying com-
pilers [9, 18]. See the following sections for more elaborate descriptions of the in-
strumentation methods of VampirTrace.

3.1 Compiler Instrumentation

The automatic instrumentation using the compiler is the most convenient way to
instrument an application. Special flags cause the compiler to generate instrumenta-
tion calls for entries and exits to/from functions. The measurement functions will be
called just after function entry and just before function exit. Currently, VampirTrace
supports following compilers for automatic instrumentation1:

• GNU compiler collection (gcc, g++, gfortran)
• Intel compiler version 10 (icc, icpc, ifort)
• PGI compiler (pgcc, pgCC, pgf77, pgf90)
• IBM compiler (xlc, xlC, xlf77, xlf90)
• Sun Studio compiler (Fortran only)
• NEC SX compiler

This automatic approach for instrumentation of user functions is very convenient
but also comes with one disadvantage. Usually, all functions will be instrumented
and traced, thus the resulting tracefile can easily become very large. Additionally,
the runtime of a fully instrumented application can significantly increase, because
the measurement overhead for instrumented functions is large compared to the exe-
cution time of very small uninstrumented functions. To avoid these negative effects,
it is recommended to exclude (filter) frequent short function calls, see also Sect. 4.6.

Compilers have different behaviors when automatically instrumenting inlined
functions. For example, the GNU and Intel compilers switch off inlining completely
when requested to insert hooks. Other compilers still perform inlining (depending
on the optimization level), but do not insert hooks in those functions. The bottom
line is that you cannot inline and instrument a function at the same time.

3.2 Source-to-Source Instrumentation

Automatic source-to-source instrumentation is an alternative approach to compiler
instrumentation. VampirTrace uses this method for instrumentation of OpenMP di-
rectives via the OPARI [13] pre-processor for C, C++ and Fortran. It automatically
inserts instrumentation calls to the POMP profiling interface in a copy of the original

1 All but the GNU and the Intel compiler instrumentation of user function entries and exits is based
on undocumented and unsupported compiler options.

The Vampir Performance Analysis Tool-Set 143

source files. VampirTrace provides appropriate POMP profiling functions to detect
OpenMP events including context information and source code locations.

3.3 Library Instrumentation

Library instrumentation replaces an existing library with an instrumented counter-
part. This requires substantial effort because for all API functions a replacement
needs to be provided. Therefore, it is only recommended for standard libraries. Vam-
pirTrace uses this technique to monitor MPI (Message Passing Interface) calls.

This method has the advantage that function arguments are visible to the mea-
surement system and can be evaluated, for example to determine communication
peers within MPI calls. Furthermore, it allows to insert instrumentation of the par-
ticular library without re-compilation but with re-linking or with dynamic linking.

For the functionality of instrumented libraries it is most desirable to refer to the
original library. Because the original function symbols are shadowed by the instru-
mentation symbols, they have to be resolved explicitly via the dynamic loader li-
brary. This is not necessary for MPI however, as the MPI standard guarantees alter-
native symbols for all API functions, compare Fig. 1.

Fig. 1 Library instrumentation for MPI. The wrapper library intercepts all API calls in order to
detect run-time events and refers to alternative symbols in the underlying original MPI library

3.4 Manual Source Instrumentation

In addition to the automatic methods manual instrumentation is supported. The
VampirTrace API provides several calls which can be used to mark functions or
any user-defined source code regions.

This allows more detailed control which functions to include in the instrumen-
tation and which to exclude in order to reduce overhead. Furthermore, the manual
instrumentation can be combined with all other ones. For example, all user functions
can be instrumented by a compiler while extra source code regions like loop bodies
can be instrumented manually by using the VampirTrace API.

144 Andreas Knüpfer et al.

4 Run-Time Measurement and Event Recording

The run-time measurement part of the event tracing software includes several com-
ponents that need to work together in order to provide a consistent view on dynamic
application behavior. In particular, all components need to pay close attention to
minimize measurement overhead.

4.1 Timer Synchronization

The performance analysis of a parallel program requires a global view on the timing
information of events. This is provided implicitly on systems equipped with a fine
granular global clock. Distributed system architectures, where every processor is
equipped with a local clock only, like cluster environments, require explicit clock
synchronization. Even though, the clocks of such systems might be synchronized
via network protocols like NTP which is not accurate enough for tracing with high
resolution timers like CPU cycle counters.

VampirTrace currently exchanges clock synchronization information at the very
beginning and the very end of a trace run. Still, during tracing every process records
all local events according to the local asynchronous timer. In a post-processing step,
the time-stamps are translated to a global timer, i.e. one local timer selected as the
master. Differences in offset and speed between the local timers are interpolated
linearly between the initial and final synchronization point.

4.2 Recording of Hardware Performance Counters

Many processors provide hardware performance counters that expose fine-grained
information about the processor’s inner workings. There exist counters which show
the number of executed floating point operations, the number of cache misses for
the various cache levels, statistics on branch instructions, etc.

The available hardware performance counters can be recorded by VampirTrace
during the tracing run. This is accomplished by using the PAPI library for accessing
the counters on supported processors. Selection of the counters to be saved is done
by merely setting an environment variable. This allows a user to easily carry out
multiple tracing runs that capture different hardware performance counters.

4.3 Recording Application’s Memory Usage

VampirTrace is able to track the dynamic memory usage of an application [10]. It
uses GNU glibc’s special hook mechanism to exchange the original memory al-

The Vampir Performance Analysis Tool-Set 145

location functions malloc, realloc and free with wrapper functions2. The
wrappers save the amount of allocated memory as counter records which allows the
user to easily examine the information from within Vampir.

As a drawback from the current implementation it is not possible to trace memory
usage of multi-threaded applications because the hook mechanism is not thread-
safe. Although an implementation could introduce thread-safe behavior by using
explicit locking, this has not been done to avoid the extensive overhead which lies
therein.

4.4 I/O Activity Tracing

Like memory allocation functions, POSIX I/O functions can be intercepted by Vam-
pirTrace, too [15], see also Table 1. If this feature is activated, then each invocation
of an I/O routine will be recorded in the trace along with the respective I/O event.
For intercepting the calls VampirTrace overwrites all I/O API functions with own
wrapper functions.

At run-time VampirTrace determines the addresses of the original I/O functions
in the Standard C Library via dlsym() and calls them to execute the actual I/O op-
erations. Afterwards an I/O event record is created which holds timing information
as well as I/O-specific data.

The details of individual I/O calls can then be investigated with Vampir, see also
Sect. 5.2. Furthermore, I/O performance counters can be generated from the events
by a post-processing tool. This allows a quick overview of I/O activities over the
run-time, see Fig. 5.

Additionally, performance data from external sources, e.g. SAN controllers, can
be integrated for evaluating application I/O performance with regard to the total
system I/O activities. However, this is not portable as it requires non-standard APIs
to query aggregated I/O statistics as well as special access privileges [15].

Table 1 List of POSIX I/O functions captured by VampirTrace

open open64 creat creat64 close dup/dup2
lseek lseek64 fdopen fopen fopen64 fclose
fseek fseeko fseeko64 fsetpos fsetpos64 rewind
read write readv writev pread pwrite
pread64 pwrite64 fread fwrite fgetc getc
fputc putc fgets fputs fscanf fprintf

2 This mechanism is not limited to GNU glibc but it indeed is available on other libc implementa-
tions, e.g. SGI IRIX.

146 Andreas Knüpfer et al.

4.5 User Defined Performance Counters

The VampirTrace API provides another type of manual instrumentation calls which
allow the recording of user defined values, e.g. loop iteration counts, calculation
results, residuals of iterative solvers, or any other scalar quantity. This can be used
to visualize performance data and application data in one go. A user counter is
defined by its name, a counter group it belongs to, the value type (integer or floating
point), and the unit. During run-time the application can record counter samples at
any convenient time.

4.6 Grouping and Filtering of Functions

Grouping of function symbols allows to determine sets of associated functions. This
might be grouping by functionality or by affiliation to certain classes or packages
or libraries. The group specification has to be defined before run-time in a plain text
file. Function names are assigned to groups, wildcard clauses are allowed. Vampir-
Trace knows default groups for MPI calls, OpenMP functions, I/O functions, and
memory allocation calls. During the visualization phase the groups are represented
by different colors. Furthermore, aggregated statistics can be retrieved for all func-
tions of a group.

As mentioned earlier, tracing with automatic instrumentation may result in sub-
stantial overhead as well as huge amounts of trace data. The filtering feature of
VampirTrace provides an ability to control this with a simple exclude list of func-
tions not to be recorded. Furthermore, function specific limits can be assigned to
record not more than a certain number of occurrences. Again, this is specified in a
plain text file at run-time.

4.7 Event Buffering, Flushing & Trace File Format

During run-time, every process or thread is storing event records to a memory buffer
of adjustable size. Only by this means, it is possible to achieve low overhead per
event. Yet, the buffer is taken from the memory size available to the application.
Therefore, its size needs to be selected carefully. As soon as this buffer is exceeded
it is flushed to a trace file. Then event recording is either discontinued or resumed.

The former is the default behavior, since it avoids producing unforeseeable large
traces by mistake. Via run-time parameters the size of the buffers can be adjusted,
as well as the maximum number of flushes allowed per process. In the latter case,
the intermediate flush phases are marked in the event trace itself, as it may cause
substantial interference with the execution of the application. Since it cannot be
avoided altogether, it has to be recognizable in the analysis, at least.

The Vampir Performance Analysis Tool-Set 147

One way or another, the trace data of every process/thread is written to a separate
file in the Open Trace Format (OTF) eventually [11]. This file may be located on
a local file system within a distributed environment. In the course of an automatic
post-processing all local trace files are moved to a common global location and
joined to a single OTF trace consisting of multiple files (streams).

4.8 Run-Time Overhead

Tracing inevitably causes overhead that slows down the execution of the application
and alters the original behavior of the application to be monitored. Therefore, the
tracing infrastructure should try to minimize this effect such that:

• the recorded timing resembles the original application as close as possible and
• the overall run-time of the traced application stays inside an acceptable range.

Run-time overhead is introduced during four parts of the tracing:

• initialization at program start-up
• per-event overhead (in event handlers)
• storage of trace data to disk (buffer flush)
• finalization

The initialization sets up internal data structures, gets symbol information, performs
early timer synchronization, etc. This overhead accounts before the actual start of
an application and therefore usually is noncritical.

The time to call individual event handlers contributes the most part of the critical
overhead of tracing. The per-event overhead does not depend on the duration of the
recorded event, thus significant overhead is produced for very frequent short events.

Storing trace data to files produces considerable overhead as well, see also
Sect. 4.7. By default, VampirTrace will postpone this operation to the finalization
phase. Then it is outside the scope of the original program run-time and thus non-
critical for performance analysis. If this is not feasible, intermediate flush operations
are necessary. This causes substantial perturbation to the course of execution, which
is marked for consideration during analysis. This is even worse for parallel execu-
tion, because intermediate flushing is triggered by the individual processes/threads
in an uncoordinated manner.

During the finalization the (remaining) event buffer contents are flushed to files.
In addition some post-processing of the trace data is required, including unification
of local identifiers and tokens and time correction. This costs additional effort (in
computation and I/O) but does not influence the quality of the measurement any-
more.

For a real-world estimation the run-time overhead per event has been evaluated
for function call events, see Table 2. It shows the overhead per function call for an
instrumented application with different measurement settings. All times have been

148 Andreas Knüpfer et al.

Table 2 Function call overhead introduced by VampirTrace (excl. original function run-time) on a
SGI Altix 4700 system with 1.6 GHz Intel Itanium II CPUs

tracing mode overhead per call

filtered out 0.82μs
recorded 0.92μs
with one PAPI counter 4.47μs
with 3 PAPI counters 4.61μs

measured on an SGI Altix 4700 which employs Intel Itanium 2 processors with
1.6 GHz speed. Function inlining has been disabled explicitly.

Minimal overhead occurs when the executed function is filtered out. Record-
ing the function call including timer etc. costs minimal additional overhead only.
Accessing hardware performance counters via PAPI accounts for substantially in-
creased overhead, whereas sampling several PAPI counters needs only marginal ex-
tra overhead.

5 Trace Visualization with Vampir and VampirServer

The Vampir tool suite is a research project of the Technische Universität Dresden
for analyzing the run-time behavior of parallel MPI/OpenMP software programs. It
visualizes the program execution by means of event traces, gathered by monitoring
software like KOJAK, TAU, or VampirTrace [16, 14, 20].

The visualization takes place after the monitored program has been completed,
using data that has been captured during the program execution. Our approach called
VampirServer introduces parallel performance data evaluation concepts which are
implemented in a client-server framework. The server component can be installed
on a segment of a parallel production environment. The corresponding clients can
run on remote desktop computers to visualize the performance results graphically,
see Fig. 2. The major advantages of this parallel, distributed approach are:

1. Performance data which tends to be bulky is kept where it was created.
2. Parallel processing significantly increases the scalability of the analysis process.
3. It works efficiently from arbitrary remote end-user platforms.
4. Very large trace files can be browsed and visualized interactively.

Visualization clients translate the condensed performance data into a variety of
graphical representations providing developers with a good understanding of per-
formance issues concerning their applications. This allows for quick focusing on
appropriate levels of detail which allows the detection and explanation of various
performance bottlenecks such as load imbalances and communication deficiencies.

The Vampir Performance Analysis Tool-Set 149

Fig. 2 An overview of the distributed software architecture for parallel performance analysis. The
left image part provides the structure of the parallel analysis server component. On the right hand
side N visualization components are depicted. Analysis and visualization components communi-
cate over an encrypted socket communication channel on the Internet

5.1 Analysis Architecture and Scalability

During the evolution of the Vampir project, we identified three requirements with
respect to current parallel computer platforms that typically cannot be fulfilled by
classical sequential post mortem software analysis approaches:

1. exploit distributed memory for analysis tasks,
2. process both long (regarding time) and wide (regarding number of processes)

program traces in real-time,
3. limit the data processed at the client end (workstation, laptop) to a volume that

is independent of the amount of event trace data.

The previous section has provided a rough sketch of the analysis server’s internal
architecture, which will now be described in further detail. Figure 3 can be regarded
as a close-up of the left part of the service architecture overview. On the right hand
side we can see the MPI master process being responsible for the interaction with the
clients and the control over the worker processes. On the left hand side m identical
MPI worker processes are depicted.

Every single MPI worker process is equipped with one main thread handling MPI
communication with the master and if required, with other MPI workers. The main
thread is created once at the very beginning and keeps on running until the server
is terminated. Depending on the number of clients to be served, every MPI process
has a dynamically changing number of n session threads being responsible for the
clients’ requests. The communication between MPI processes is done with standard
MPI constructs whereas the local threads communicate by means of shared buffers,
synchronized by mutexes and conditional variables. This permits a low overhead
during interactions between the mostly independent components.

Session threads can be subdivided into three different module categories as there
are: analysis modules, event data base modules, and trace format modules. Starting
from the bottom, trace format modules include parsers for the traditional Vampir

150 Andreas Knüpfer et al.

Fig. 3 The parallel analysis server in detail. The server consists of m worker processes (left) and
one master process (right). The worker processes store performance data and handle analysis re-
quests whereas the master process is responsible for merging and sending worker results to con-
nected visualization clients

trace format (VTF), the newly designed scalable trace format (OTF) [11], and the
EPILOG trace format (ELG) [17]. The modular approach allows to easily add other
third party formats. The data base modules include storage objects for all supported
event categories like functions, messages, performance metrics etc. The final mod-
ule category provides the analysis capabilities of the server. This type of module
performs its work on the data provided by the data base modules.

In contrast to the worker process described above the situation for the master pro-
cess is slightly different. First of all, the layout with respect to its inherent threads
is identical to the one applied on the worker processes. Similar to a worker process,
the main thread is also responsible for doing all MPI communication with the work-
ers. The session threads on the other hand have different tasks. They are responsible
for merging analysis results received from several workers, converting the results to
a platform independent format, and doing the communication with the clients like
depicted on the right hand side of Fig. 3.

5.2 Zooming and Browsing in Timeline Displays

The most prominent displays provided by Vampir are the timeline displays. They
show the sequence of recorded events on a horizontal time axis that can be zoomed
to any detail level. Thus, timelines allow an in-depth analysis of the dynamic behav-
ior of an application. There are several types of timeline displays:

The Global Timeline. It shows the processes and threads of the parallel program
on the vertical axis. The program’s state (i.e. the currently active function) is de-
picted by a horizontal bar, which is colored according to the associated function
group. Point-to-point messages, global communication, as well as I/O operations

The Vampir Performance Analysis Tool-Set 151

Fig. 4 Global Timeline display showing load imbalance. The calculation phase (CHEM) is not
well balanced, which leads to high synchronization times of many processes (MPI)

are displayed by arrows. This allows a very detailed analysis of the parallel pro-
gram flow, e.g. communication patterns, load imbalances, and I/O bottlenecks.
An example of a load imbalance situation is shown in Fig. 4.

The Summary Timeline. It provides a stacked view of the number of processes
involved at a given activity (i.e. function group) dynamically over time. In this
display no individual processes can be identified, instead it allows a very concise
high-level overview over many parallel processes/threads. By this means, phases
with a high share of communication and synchronization can be easily pinpointed
even in massively parallel programs.

The Counter Timeline. It displays selected counters for all processes next to
each other, which is useful to locate anomalies indicating performance prob-
lems. The counters can be displayed as absolute values (e.g. allocated memory
in bytes) or as rate (e.g. floating point operations per second).

The Process Timeline. In contrast to the other displays mentioned, it focuses on
one process or thread. Here, the vertical axis shows the sequence of events in
their respective call stack levels, allowing a detailed analysis of function calls.
Performance counters and I/O events can be displayed aligned to the function
calls. As an example, a complete Process Timeline for the WRF weather forecast
model [1] is shown in Fig. 5. By zooming in, more and more details can be
revealed up to the level of single function calls.

All displays are coupled in terms of the selected time interval. This means,
zooming in one timeline display automatically updates all other displays (timelines
and statistics) accordingly. Navigation in timelines is possible by scrollbars and by
means of the thumbnail view, which shows a small overview of the complete time-
line with zooming markers.

152 Andreas Knüpfer et al.

Fig. 5 Complete Process Timeline of a WRF process (right). By means of the call stack represen-
tation, one can clearly see the initialization phase and the iteration steps. It includes performance
counters for memory allocation and floating point operations per second. A zoomed version shows
individual I/O operations with very slow speed indicating a performance problem (left)

5.3 Statistics Displays

In addition to the timeline displays, Vampir provides a set of statistics displays,
which show summarized information according to the currently selected time inter-
val of the timeline view. This is the most interesting advantage over profiling data
because it allows to show statistics specifically for selected time intervals.

Different statistics displays provide information about various aspects like exe-
cution times of functions or groups, the function call tree, point-to-point messages,
collective communication, as well as I/O events.

The Summary Chart. It shows profile information about functions or groups. It
allows to create profiles of parts of a complex scientific application, e.g. omitting
initialization and finalization. Furthermore, this enables to compare different time
intervals of the whole trace, e.g. different time steps of a numerical simulation.
This is illustrated in Fig. 6, which shows the Summary Charts for two different
time steps of the WRF weather code.

The Activity Chart. This display resembles the Summary Chart but focuses on a
single process/thread only.

The Message Statistics Display. To analyze point-to-point communication of
MPI applications, the Message Statistics provide a sender-receiver matrix of
statistics. It can display different kinds of information, like message count, and
lengths, speed and duration of messages. Again, this display may become very
large with a large number of processes. Therefore, a thumbnail provides an
overview and a navigational aid.

The Vampir Performance Analysis Tool-Set 153

Fig. 6 Summary Charts of two different time steps of the WRF model showing exclusive execution
times of the functions. The time step selected in the left window includes radiation calculation,
which is very time consuming

Figure 7 shows the Message Statistics of the a WRF model displaying the average
message transfer rate. Slow transfer rates may not only be caused by an actual
slow message transfer, but also due to delays if one of the communication partner
needs to wait for the other to start sending or receiving.

Further types of statistics displays include the Collective Communication Statis-
tics, the I/O Event Statistics, the Process Profile, the Call Tree, and the Message
Profile. Refer to [7] for a complete list and comprehensive description.

Fig. 7 Message Statistics of the WRF model showing a typical pattern of a parallel CFD code. in
this screenshot, the average message transfer rates are displayed

154 Andreas Knüpfer et al.

6 Related Work

There are many other academic and commercial trace-based performance analysis
tools with focus on HPC and parallel computing. The Paraver tools from Technical
University of Catalonia in Barcelona, Spain [8] and Trace Collector and Trace An-
alyzer tools from Intel [3, 2] use very similar trace analysis methods with respect to
instrumentation, event recording and visual displays.

The TAU toolkit from University of Oregon, US uses similar instrumentation
techniques, but focuses on elaborate profiling (even though it supports trace analysis
as well) and provides statistical performance evaluation and visualization.

The tools from the KOJAK project as well as from the successor project Scalasca
from the Jülich Supercomputing Centre (JSC) allow automatic detection of perfor-
mance problems for parallel and massively parallel applications [16, 5].

7 Conclusions and Future Work

VampirTrace and Vampir are robust event trace analysis tools for parallel applica-
tions that work on many UNIX-like platforms. Both support analysis of a number of
important performance properties like function calls, hardware performance coun-
ters, communication, I/O behavior and memory allocation.

In the near future, VampirTrace is going to be integrated into Open MPI, a
well known collaborative open source MPI implementation [19]. The next ma-
jor release Open MPI 1.3 which is expected in the first half of 2008 will in-
clude VampirTrace by default. In addition to the standard MPI compiler wrappers
mpicc, mpicxx, mpif90, etc. it will provide alternative versions mpicc-vt,
mpicxx-vt, mpif90-vt that perform VampirTrace instrumentation.

For Vampir a port to Microsoft Windows is underway which is expected to be
available as a beta version in 2009.

Current research focuses on elimination of redundancy in traces and pattern de-
tection in large event data sets via Complete Call Graphs (CCG) [12]. This will
allow more efficient in-memory storage during analysis.

In long, iterative as well as SIMD-style (single instruction multiple data) parallel
applications there is a high degree of repetition in the program execution. It leads to
repeated event sequences with identical or similar timing and behavior. It is possible
to replace such redundant entities with references to a single instance which leads
to reduced memory consumption as well as to more efficient trace analysis.

This approach is specially designed for event tracing data. In particular, it needs
to guarantee a suitable definition of similar behavior such that insignificantly small
deviations are ignored (e.g. few ticks in timing) but important differences are pre-
served (e.g. process/thread IDs or MPI ranks).

Based on compressed in-memory data structures, detection of repetition patterns
can be done very efficiently. Furthermore, it is easy to differentiate between regular
(good) behavior and irregular outliers (bad) for repeated sub-sequences of events.

The Vampir Performance Analysis Tool-Set 155

References

1. The Weather research and forcasting system WRF. http://wrf-model.org
2. Corp., I.: Intel (R) Trace Analyzer 7.1 Reference Guide (2007). http://www.intel.

com/ , document number 318120
3. Corp., I.: Intel (R) Trace Collector 7.1 User’s Guide (2007). http://www.intel.com/,

document number 318119
4. Fenlason, J., Stallman, R.: GNU gprof
5. Geimer, M., Kuhlmann, B., Pulatova, F., Wolf, F., Wylie, B.J.N.: Scalable Collation and Pre-

sentation of Call-Path Profile Data with CUBE. In: Parallel Computing: Architectures, Al-
gorithms and Applications (Proceedings of the International Conference ParCo 2007), pp.
645–652. Jülich/Aachen, Germany (2007)

6. Graham, S.L., Kessler, P.B., McKusick, M.K.: gprof: a Call Graph Execution Profiler. In:
SIGPLAN Symposium on Compiler Construction, pp. 120–126 (1982). URL citeseer.
ist.psu.edu/graham82gprof.html

7. GWT TU Dresden mbH: VampirServer 1.8 User Manual (2008). http://www.vampir./
eu/

8. Jost, G., Jin, H., Labarta, J., Gimenez, J.: Interfacing Computer Aided Parallelization and
Performance Analysis. In: Proceedings of the International Conference on Computational
Science (ICCS) (2003)

9. Jurenz, M.: VampirTrace Software and Documentation. ZIH, TU Dresden (2006). http:
//www.tu-dresden.de/zih/vampirtrace/

10. Jurenz, M., Brendel, R., Knüpfer, A., Müller, M.S., Nagel, W.E.: Memory Allocation Tracing
with VampirTrace. In: International Conference on Computational Science (2), pp. 839–846
(2007)

11. Knüpfer, A., Brendel, R., Brunst, H., Mix, H., Nagel, W.E.: Introducing the Open Trace For-
mat (OTF). In: Proc. of ICCS 2006: 6’th Intl. Conference on Computational Science, Springer
LNCS 3992, pp. 526 – 533. Reading, UK (2006)

12. Knüpfer, A., Nagel, W.E.: Compressible Memory Data Structures for Event-Based Trace
Analysis. Future Generation Computer Systems 22(3), 359–368 (2006)

13. Malony, A.D., Mohr, B., Wolf, F., Shende, S.: Design and Prototype of a Performance Tool
Interface for OpenMP. The Journal of Supercomputing Vol. 23, 105–128 (2002)

14. Malony, A.D., Shende, S., Bell, R., Li, K., Li, L., Trebon, N.: Advances in the TAU perfor-
mance system pp. 129–144 (2004)

15. Mickler, H., Kluge, M., Knüpfer, A., Müller, M.S., Nagel, W.E.: Tracing Application I/O Calls
with VampirTrace. In: Euro-Par ’08: Proc. from the 14th Intl. Euro-Par Conference on Parallel
Processing (2008). (Submitted for publication)

16. Mohr, B., Wolf, F.: KOJAK: A Tool Set for Automatic Performance Analysis of Parallel Ap-
plications. Proceedings of the International Conference on Parallel and Distributed Computing
(Euro-Par 2003) pp. 1301–1304 (2003)

17. Mohr, B., Wolf, F.: EPILOG Binary Trace-Data Format. Tech. Rep. FZJ-ZAM-IB-2004-06,
Forschungszentrum Jülich, University of Tennessee (2004)

18. Müller, M., Knüpfer, A., Jurenz, M., Lieber, M., Brunst, H., Mix, H., Nagel, W.E.: Devel-
oping Scalable Applications with Vampir, VampirServer and VampirTrace. In: C. Bischof,
M. Bücker, P. Gibbon, G. Joubert, T. Lippert, B. Mohr, F. Peters (eds.) Parallel Computing:
Architectures, Algorithms and Applications, Proc. of ParCo 2007, vol. 38, pp. 637–644. NIC-
Series (2007)

19. Open MPI website. http://www.open-mpi.org/
20. Shende, S., Malony, A.D.: The Tau Parallel Performance System. Int. J. High Perform. Com-

put. Appl. 20(2), 287–311 (2006). DOI 10.1177/1094342006064482

http://wrf-model.org
http://www.intel.com/
http://www.intel.com/
http://www.intel.com/
http://citeseer.ist.psu.edu/graham82gprof.html
http://citeseer.ist.psu.edu/graham82gprof.html
http://www.vampir.eu/
http://www.vampir.eu/
http://www.tu-dresden.de/zih/vampirtrace/
http://www.tu-dresden.de/zih/vampirtrace/
http://www.open-mpi.org/

Usage of the SCALASCA toolset
for scalable performance analysis
of large-scale parallel applications

Felix Wolf1,2, Brian J. N. Wylie1, Erika Ábrahám1, Daniel Becker1,2,
Wolfgang Frings1, Karl Fürlinger3, Markus Geimer1, Marc-André Hermanns1,
Bernd Mohr1, Shirley Moore3, Matthias Pfeifer1,2, and Zoltán Szebenyi1,2

Abstract SCALASCA is a performance toolset that has been specifically designed
to analyze parallel application behavior on large-scale systems, but is also well-
suited for small- and medium-scale HPC platforms. SCALASCA offers an incremen-
tal performance-analysis process that integrates runtime summaries with in-depth
studies of concurrent behavior via event tracing, adopting a strategy of successively
refined measurement configurations. A distinctive feature of SCALASCA is its abil-
ity to identify wait states even for very large processor counts. The current version
supports the MPI, OpenMP and hybrid programming constructs most widely used in
highly-scalable HPC applications.

1 Introduction

Supercomputing is a key technology pillar of modern science and engineering, in-
dispensable to solve critical problems of high complexity. World-wide efforts to
build machines with performance levels in the petaflops range acknowledge that
the requirements of many key applications can only be met by the most advanced
custom-designed large-scale computer systems. However, as a prerequisite for
their productive use, the HPC community needs powerful and robust performance-
analysis tools that make the optimization of parallel applications both more effective
and more efficient. Such tools not only help improve the scalability characteristics
of scientific codes and thus expand their potential, but also allow domain experts to

1. Jülich Supercomputing Centre, Forschungszentrum Jülich, Germany
{f.wolf,b.wylie,e.abraham,d.becker,w.frings,m.geimer,
m.a.hermanns,b.mohr,m.pfeifer,z.szebenyi}@fz-juelich.de

2. Department of Computer Science and Aachen Institute for Advanced Study in
Computational Engineering Science, RWTH Aachen University, Germany

3. Innovative Computing Laboratory, University of Tennessee, USA
{karl,shirley}@cs.utk.edu

157

mailto:f.wolf@fz-juelich.de
mailto:b.wylie@fz-juelich.de
mailto:e.abraham@fz-juelich.de
mailto:d.becker@fz-juelich.de
mailto:w.frings@fz-juelich.de
mailto:m.geimer@fz-juelich.de
mailto:m.a.hermanns@fz-juelich.de
mailto:b.mohr@fz-juelich.de
mailto:m.pfeifer@fz-juelich.de
mailto:z.szebenyi@fz-juelich.de
mailto:karl@cs.utk.edu
mailto:shirley@cs.utk.edu

158 F. Wolf et al.

concentrate on the science underneath rather than to spend a major fraction of their
time tuning their application for a particular machine.

As the current trend in microprocessor development continues, this need will be-
come even stronger in the future. Facing increasing power dissipation and with little
instruction-level parallelism left to exploit, computer architects are realizing further
performance gains by using larger numbers of moderately fast processor cores rather
than by further increasing the speed of uni-processors. As a consequence, supercom-
puter applications are being required to harness much higher degrees of parallelism
in order to satisfy their growing demand for computing power. With an exponen-
tially rising number of cores, the often substantial gap between peak performance
and the performance actually sustained by production codes [6] is expected to widen
even further. Finally, increased concurrency levels place higher scalability demands
not only on applications but also on parallel programming tools [10]. When applied
to larger numbers of processes, familiar tools often cease to work satisfactorily (e.g.,
due to escalating memory requirements, failing displays, or limited I/O bandwidth).

Developed at the Jülich Supercomputing Centre in cooperation with the Univer-
sity of Tennessee, SCALASCA is a performance-analysis toolset that has been specif-
ically designed for use on large-scale systems including IBM Blue Gene and Cray
XT, but is also well-suited for small- and medium-scale HPC platforms. SCALASCA

supports an incremental performance-analysis process that integrates runtime sum-
maries with in-depth studies of concurrent behavior via event tracing, adopting a
strategy of successively refined measurement configurations. A distinctive feature
of SCALASCA is its ability to identify wait states that occur, for example, as a result
of unevenly distributed workloads. Especially when trying to scale communication-
intensive applications to large processor counts, such wait states can present se-
vere challenges to achieving good performance. Compared to its predecessor KO-
JAK [11], SCALASCA can detect such wait states even in very large configurations
of processes using a novel parallel trace-analysis scheme [3].

In this article, we give an overview of SCALASCA and show its capabilities for
diagnosing performance problems in large-scale parallel applications. First, we re-
view the SCALASCA analysis process and discuss basic usage. After presenting the
SCALASCA instrumentation and measurement systems in Section 3, Section 4 ex-
plains how its trace analysis can efficiently detect wait states in communication and
synchronization operations even in very large configurations of processes, before
we demonstrate how execution performance analysis reports can be interactively
explored in Section 5. Finally, in Section 6, we outline our development goals for
the coming years.

2 Overview

The current version of SCALASCA supports measurement and analysis of the MPI,
OpenMP and hybrid programming constructs most widely used in highly-scalable
HPC applications written in C/C++ and Fortran on a wide range of current HPC

SCALASCA 159

platforms. Usage is primarily via the scalasca command with appropriate action
flags, and is identical for a 64-way OpenMP application on a single UltraSPARC-T2
processor or a 64k hybrid OpenMP/MPI application on a Blue Gene/P.

Figure 1 shows the basic analysis workflow supported by SCALASCA. Before
any performance data can be collected, the target application must be instrumented,
that is, it must be modified to record performance-relevant events whenever they
occur. On most systems, this can be done completely automatically using compiler
support; on other systems a mix of manual and automatic instrumentation mecha-
nisms is offered. When running the instrumented code on the parallel machine, the
user can choose between generating a summary report (aka profile) with aggregate
performance metrics for individual function call paths, or generating event traces
recording individual runtime events from which a profile or time-line visualization
can later be produced. The first option is useful to obtain an overview of the perfor-
mance behavior and also to optimize the instrumentation for later trace generation.
Since traces tend to become very large, this step is usually recommended before
choosing the second option. When tracing is enabled, each process generates a trace
file containing records for all its process-local events. After program termination,
SCALASCA loads the trace files into main memory and analyzes them in parallel
using as many CPUs as have been used for the target application itself. During the
analysis, SCALASCA searches for characteristic patterns indicating wait states and
related performance properties, classifies detected instances by category and quan-
tifies their significance. The result is a pattern-analysis report similar in structure to
the summary report but enriched with higher-level communication and synchroniza-
tion inefficiency metrics. Both summary and pattern reports contain performance
metrics for every function call-path and system resource which can be interactively
explored in a graphical report explorer (Fig. 3). As an alternative to the automatic
search, the event traces can be converted and investigated using third-party trace
browsers such as Paraver [4, 7] or VAMPIR [5, 9], taking advantage of their power-
ful time-line visualizations and rich statistical functionality.

3 Instrumentation and Measurement

SCALASCA offers analyses based on two different types of performance data: (i)
aggregated statistical summaries and (ii) event traces. By showing which process
consumes how much time in which call-path, the summary report provides a useful
overview of an application’s performance behavior. Because it aggregates the col-
lected metrics across the entire execution, the amount of data is largely independent
of the program duration. This is why runtime summarization is the first choice for
very long-running programs working on realistic input data sets and models. The
summary metrics measured with SCALASCA include wall-clock time, the number
of times a call-path has been visited, message counts, bytes transferred, and a rich
choice of hardware counters available via the PAPI library [2].

160 F. Wolf et al.

 Measurement
 library

Instr.
target
application

Parallel
 pattern search

Local
event traces

Pattern
report

Summary
report

Optimized measurement configuration

Report
explorer

Pattern
report

Third-party
trace

browser

Merge

Global
trace

Sequential
 pattern search

Conversion

Pattern
trace

Exported
trace

Fig. 1 SCALASCA’s performance analysis workflow

In contrast, event traces allow the in-depth study of parallel program behavior.
Tracing is especially effective for observing the interactions between different pro-
cesses or threads that occur during communication or synchronization operations
and to analyze the way concurrent activities influence each other’s performance.
When an application is traced, SCALASCA records individual performance-relevant
events with timestamps and writes them to a trace file (one per process) to be ana-
lyzed in a subsequent step.

To effectively monitor program execution, SCALASCA intercepts runtime events
critical to communication and computation activities. These events include enter-
ing and leaving functions or other code regions as well as sending and receiving
point-to-point messages or participation in collective communication. Whereas the
communication-related event types are crucial to study the interactions among dif-
ferent processes and to identify wait states, function entries and exits are needed
to understand the computational requirements and the context in which the most
demanding communication operations occur.

The application must be instrumented to provide notification of these events
during measurement, using function calls inserted at specific important points
(“events”) which call into the SCALASCA measurement library. Just linking the ap-
plication with the measurement library already ensures that all events related to
MPI operations are properly captured. For OpenMP, a source preprocessor is used
which automatically instruments directives and pragmas for parallel regions, etc.,
and many compilers are capable of adding instrumentation to every function or rou-
tine entry and exit. Finally, programmers can manually add their own custom in-
strumentation annotations in the source code for important regions (such as phases
or loops, or functions when this is not done automatically by the compiler): these
annotations are in the form of pragmas or macros which are ignored when instru-
mentation is not configured.

SCALASCA 161

Instrumentation configuration and processing of source files are achieved by pre-
fixing the SCALASCA instrumenter to selected compilation commands and the final
link command, without requiring other changes to optimization levels or the build
process.

scalasca -instrument <compile-or-link-command>
% scalasca -instrument mpicc -c foo.c
% scalasca -instrument f90 -o bar -OpenMP bar.F
% scalasca -instrument mpif90 -o foobar -OpenMP foo.o bar.F

A simple means to be able to conveniently instrument an entire application, is to
add a ‘preparer’ prefix to compile and link commands in its Makefile(s), which is
undefined by default and results in a regular uninstrumented build, or when the pre-
parer is set to the SCALASCA instrumenter then an instrumented build is produced.

PREP =
MPICC = $(PREP) mpicc
MPIFC = $(PREP) mpif90
foobar: bar.F foo.o

$(MPIFC) -o $@ -OpenMP foo.o bar.F

% make PREP="scalasca -instrument"

The SCALASCA measurement system that gets linked with instrumented applica-
tion executables can be configured to allow runtime summaries and/or event traces
to be collected, along with optional hardware counter metrics. A unique experiment
archive is created to contain all of the measurement and analysis artifacts, including
configuration information, log files and analysis reports. When event traces are col-
lected, they are also stored in the experiment archive to avoid accidental corruption
by simultaneous or subsequent measurements.

Measurements are collected and analyzed under the control of a nexus which
automatically configures the parallel trace analyzer with the same number of pro-
cesses as used for measurement. This allows SCALASCA analysis to be specified as
a command prefixed to the application execution command-line, whether part of a
batch script or run interactively.

scalasca -analyze <application-launch-command>
% scalasca -analyze mpiexec -np 65536 foo arglist
Scalasca runtime summarization experiment ./epik foo 65536 sum
% OMP NUM THREADS=64 scalasca -analyze bar arglist
Scalasca runtime summarization experiment ./epik bar Ox64 sum %
OMP NUM THREADS=4 scalasca -analyze mpiexec -np 512 foobar
Scalasca runtime summarization experiment ./epik foobar 512x4 sum

Although collection of runtime summarization experiments is the default, addi-
tion of the -t flag configures trace collection and automatic analysis (without the
need for instrumentation re-configuration).

% OMP NUM THREADS=4 scalasca -analyze -t mpiexec -np 512 foobar
Scalasca trace analysis experiment ./epik foobar 512x4 trace

162 F. Wolf et al.

Instrumented functions which are executed frequently, while only performing a
small amount of work each time they are called, have an undesirable impact on
measurement. The overhead of measurement for such functions is large compared
to the execution time of the (uninstrumented) function, resulting in measurement
dilation, while recording such events requires significant space and analysis takes
longer with relatively little improvement in quality. This is especially important for
event traces whose size is proportional to the total number of events recorded. For
this reason, SCALASCA offers various mechanisms to exclude certain functions from
measurement. Before writing a trace file, the instrumentation should therefore be
optimized based on a visit-count summary obtained during an earlier run.

time

pr
oc

es
s

waiting

MPI_Send()

MPI_Recv()

time

pr
oc

es
s waiting

MPI_Recv()

MPI_Send()

(a) Late Sender (b) Late Receiver

time

pr
oc

es
s

waiting

MPI_Recv() MPI_Recv()

MPI_Send()

MPI_Send()

time

pr
oc

es
s

waiting

waiting

MPI_Allreduce()

MPI_Allreduce()

MPI_All.

(c) Late Sender / Wrong Order (d) Wait at N ×N

Fig. 2 Examples for patterns of inefficient behavior. Note that the combination of MPI functions
used in each of these examples represents just one possible case

4 Trace Analysis

In message-passing applications, processes often require access to data provided by
remote processes, making the progress of a receiving process dependent upon the
progress of a sending process. If a rendezvous protocol is used, this relationship
also applies in the opposite direction. Collective synchronization is similar in that
its completion requires each participating process to have reached a certain point.
As a consequence, a significant fraction of the time spent in communication and

SCALASCA 163

synchronization routines can often be attributed to wait states that occur when pro-
cesses fail to reach implicit or explicit synchronization points in a timely manner,
for example, as a result of an unevenly distributed workload. Especially when try-
ing to scale communication-intensive applications to large process counts, such wait
states can present severe challenges to achieving good performance. As a first step
in reducing the impact of wait states, SCALASCA provides a diagnostic method that
allows their localization, classification, and quantification. Because wait states cause
temporal displacements between program events occurring on different processes,
their identification can be accomplished by searching event traces for characteristic
patterns. A subset of the patterns supported by SCALASCA is depicted in Fig. 2.

As the first example of a typical wait state, consider the so-called Late Sender
pattern (Fig. 2(a)). Here, a receive operation is entered by one process before the
corresponding send operation has been started by the other. The time lost waiting
due to this situation is at least the time difference between the two function invo-
cations. In contrast, the Late Receiver pattern (Fig. 2(b)) describes the inverse situ-
ation, where a sender is blocked while waiting for the receiver when a rendezvous
protocol is used (e.g., to transfer a large message). The Late Sender / Wrong Order
pattern (Fig. 2(c)) is more complex than the previous two. Here, a receiver waits
for a message, although an earlier message is ready to be received by the same des-
tination process (i.e., message receipt in wrong order). Finally, the Wait at N×N
pattern (Fig. 2(d)) quantifies the waiting time due to the inherent synchronization in
collective n-to-n operations, such as MPI Allreduce.

To accomplish the search is a scalable way, SCALASCA exploits both distributed
memory and parallel processing capabilities available on the target system. Instead
of sequentially analyzing a single global trace file, as done by its predecessor tool
KOJAK, SCALASCA analyzes separate process-local trace files in parallel by replay-
ing the original communication on as many CPUs as have been used to execute the
target application itself. During the search process, SCALASCA classifies detected
pattern instances by category and quantifies their significance for every program
phase and system resource involved. Since trace processing capabilities (i.e., pro-
cessors and memory) grow proportionally with the number of application processes,
SCALASCA has completed pattern searches even at the previously intractable scale
of over 22,000 processes. Additionally, to allow accurate trace analyses on systems
without globally synchronized clocks such as most PC clusters the trace analyzer
provides the ability to synchronize inaccurate timestamps postmortem using the
same scalable replay mechanism [1].

OpenMP Support and Pattern Traces

In addition to the scalable MPI trace analysis, sequential trace analysis (Fig. 1) is also
provided for OpenMP and MPI one-sided RMA operations. This sequential analysis
is currently the default for pure OpenMP measurements, and can be specified for an
augmented analysis of MPI and hybrid measurements when desired. For large mea-
surements, however, the additional storage space and serial analysis time required

164 F. Wolf et al.

can be prohibitive, unless very targeted instrumentation is configured or the problem
size is reduced (e.g., to only a few timesteps or iterations). Other options include vi-
sual analysis using third-party trace browsers, such as Paraver and VAMPIR and the
generation of pattern traces.

The first step to access these features consists of merging the local trace files
generated by SCALASCA into a single global trace file. The resulting global trace
file can then be searched for MPI and/or OpenMP patterns or converted and loaded
into Paraver or VAMPIR. A third option was motivated by the fact that the pattern
search method accumulates the severities of all of the pattern instances found to
inform about the overall performance penalty. However, the temporal and spatial
relationships between individual pattern instances are lost, although these relation-
ships can be essential to understand the detailed circumstances of a performance
problem. These relationships can now be retained by writing a second event trace
with events delimiting individual pattern occurrences. Guided by the summary pat-
tern report, this synthetic pattern trace can be interactively analyzed leveraging the
powerful functionality of the aforementioned trace browsers.

5 Understanding Performance Behavior

After SCALASCA analysis is completed, the experiment archive may contain a
summary report generated immediately at measurement completion and/or trace-
analysis report(s) generated after searching event traces. These profiles have the
same structure and can be viewed and manipulated using the same set of commands.

scalasca -examine <experiment-archive>
% scalasca -examine epik foobar 512x4 trace

Whereas a summary report includes metrics, such as time, visit counts, message
statistics or hardware counters, a trace-analysis report also accounts for the times
lost in different wait states. Both types of reports are stored as a three-dimensional
array with the dimensions metric, call path, and system resource (e.g., process or
thread). Because of the cubic structure, the corresponding file format is called CUBE.
For every metric included, a CUBE report stores the aggregated value for each com-
bination of call-path and process or thread. Motivated by the need to represent per-
formance behavior on different levels of granularity as well as to express natural
hierarchical relationships among metrics, program, or system resources, each di-
mension is organized in a hierarchy.

The SCALASCA analysis report explorer (Fig. 3) provides the ability to interac-
tively browse through this three-dimensional performance data space in a convenient
way. Its design emphasizes simplicity by combining a small number of orthogonal
features with a limited set of user actions. Each dimension of the data space (met-
ric, call-path, and system resource) can be shown using tree displays and allows
the user to interactively explore the values of all the data points. Since the data
space is large, views representing only a subspace can be selected and combined

SCALASCA 165

Which performance
problem?

Which call paths
are most affected?

Which processes
are most affected?
Where on the machine?

Percentage of the
execution time

Color encoding of
percentage

Fig. 3 The trace analysis report displayed in the report explorer indicates that 29.4% of the total
time in the annotated region <<timestep loop>> is spent waiting due to Late Sender situa-
tions (left pane). The call tree (middle pane) shows that more than one-third of the waiting time is
concentrated in one call-path, with its waiting time unevenly distributed across the visible section
of the machine topology (right pane)

with aggregation mechanisms that control the level of detail. Two types of actions
can be performed: selecting a node or expanding/collapsing a node. Whereas the
first action defines a “slice” or “column” of the data space, the latter exposes/hides
sub-hierarchies of the different dimensions. To help identify combinations with a
high value more quickly, all values are not only shown numerically but also color-
coded. To facilitate the analysis of runs on many processors, the explorer provides
a scalable two- or three-dimensional Cartesian grid display to visualize physical or
virtual process topologies which were recorded with measurements. The topological
display is offered as an alternative to a standard tree hierarchy of machine, compute
nodes, processes and threads.

With a set of command-line tools [8], CUBE reports can be combined or ma-
nipulated to allow comparisons or aggregations of different reports or to focus the
analysis on specific parts of a report. Specifically, multiple reports can be averaged
or merged, the difference between two reports calculated, or a new report gener-
ated after pruning specified call-trees and/or specifying a call-tree node as a new
root. The latter can be particularly useful for eliminating uninteresting phases (e.g.,
initialization) and focusing the analysis on a selected part of the execution. These

166 F. Wolf et al.

utilities each generate new CUBE-format reports as output that can be loaded into
the explorer like the original reports that were used as input.

6 Outlook

Future enhancements will aim at both further improving the functionality and scal-
ability of the SCALASCA toolset. Whereas automatic MPI analysis has been demon-
strated at very large scales, runtime summaries currently only include measurements
for the OpenMP master thread, and OpenMP trace analysis is currently done serially:
for hybrid applications, scalable MPI trace analysis is the default and serial OpenMP

analysis is offered as an additional option. Most standard-conforming HPC applica-
tions should be measurable, however, there is no recording or analysis of MPI I/O,
experimental analysis of MPI one-sided RMA operations is currently only done by
the serial trace analyzer, and automatic trace analysis of OpenMP applications using
dynamic, nested and guarded worksharing constructs is not yet possible.

While the current parallel trace analysis mechanism is already a very power-
ful instrument in terms of the number of application processes it supports, we are
working on optimized data management operations and workflows that will allow
us to master even larger configurations. Restrictions and inefficiencies imposed by
the current CUBE-file format and data model are also being addressed to allow non-
aggregatable metrics (such as rates) to be stored and accessed without the need to
process and aggregate values from the entire report.

Although parallel simulations are often iterative in nature, individual iterations
can differ in their performance characteristics. Another major focus of our research
is therefore to study the temporal evolution of the performance behavior as a compu-
tation progresses. Our general approach is to first observe the behavior on a coarse-
grained level and then to successively refine the measurement focus as new perfor-
mance knowledge becomes available. Using a more flexible measurement control,
we are also striving to offer more targeted trace collection mechanisms, reducing
memory and disk space requirements while retaining the value of trace-based in-
depth analysis.

Finally, the symptoms of a performance bottleneck may appear much later than
the event causing it, on a different processor, or both. For this reason, we are cur-
rently looking for ways to establish causal connections among different pattern in-
stances found in traces and related phenomena such as load imbalance because we
believe that understanding such links can prove essential for more effective scaling
strategies. First experiments with a trace-based simulator that verifies correspond-
ing hypotheses by replaying modified traces in real time on the target system proved
encouraging.

For more information on SCALASCA refer to the website www.scalasca.org.

www.scalasca.org

SCALASCA 167

Acknowledgements This work has been supported by the Helmholtz Association under Grants
No. VNG-118 and No. VH-VI-228 (‘VI-HPS’) and by the Federal Ministry for Research and
Education (BMBF) under Grant No. 01IS07005C (‘ParMA’).

References

1. Becker, D., Rabenseifner, R., Wolf, F.: Timestamp synchronization for event traces of large-
scale message-passing applications. In: Proc. of the 14th European Parallel Virtual Machine
and Message Passing Interface Conference (EuroPVM/MPI), Lecture Notes in Computer Sci-
ence, vol. 4757, pp. 315–325. Springer, Paris, France (2006)

2. Browne, S., Dongarra, J., Garner, N., Ho, G., Mucci, P.: A portable programming interface
for performance evaluation on modern processors. International Journal of High Performance
Computing Applications 14(3), 189–204 (2000)

3. Geimer, M., Wolf, F., Wylie, B., Mohr, B.: Scalable parallel trace-based performance analy-
sis. In: Proc. of the 13th European Parallel Virtual Machine and Message Passing Interface
Conference (EuroPVM/MPI), Lecture Notes in Computer Science, vol. 4192, pp. 303–312.
Springer, Bonn, Germany (2006)

4. Labarta, J., Girona, S., Pillet, V., Cortes, T., Gregoris, L.: DiP : A parallel program devel-
opment environment. In: Proc. of the 2nd International Euro-Par Conference, pp. 665–674.
Springer, Lyon, France (1996)

5. Nagel, W., Weber, M., Hoppe, H.C., Solchenbach, K.: VAMPIR: Visualization and analysis
of MPI resources. Supercomputer 63, XII(1), 69–80 (1996)

6. Oliker, L., Canning, A., Carter, J., Iancu, C., Lijewski, M., Kamil, S., Shalf, J., Shan, H.,
Strohmaier, E., Ethier, S., Goodale, T.: Scientific application performance on candidate petas-
cale platforms. In: Proc. of the International Parallel & Distributed Processing Symposium
(IPDPS). Long Beach, CA (2007)

7. Paraver: http://www.cepba.upc.es/paraver/
8. Song, F., Wolf, F., Bhatia, N., Dongarra, J., Moore, S.: An algebra for cross-experiment per-

formance analysis. In: Proc. of the International Conference on Parallel Processing (ICPP),
pp. 63–72. IEEE Society, Montreal, Canada (2004)

9. VAMPIR: http://www.vampir.eu/
10. Vanter, M.V.D., Post, D., Zosel, M.: HPC needs a tool strategy. In: Proc. of the 2nd Interna-

tional Workshop on Software Engineering for High Performance Computing System Applica-
tions (SE-HPCS) (2005)

11. Wolf, F., Mohr, B.: Automatic performance analysis of hybrid MPI/OpenMP applications.
Journal of Systems Architecture 49(10-11), 421–439 (2003)

http://www.cepba.upc.es/paraver/
http://www.vampir.eu/

Evolution of a Parallel Performance System

Allen D. Malony, Sameer Shende, Alan Morris, Scott Biersdorff, Wyatt Spear,
Kevin Huck, and Aroon Nataraj

Abstract The TAU Performance System® is an integrated suite of tools for instru-
mentation, measurement, and analysis of parallel programs targeting large-scale,
high-performance computing (HPC) platforms. Representing over fifteen calendar
years and fifty person years of research and development effort, TAU’s driving con-
cerns have been portability, flexibility, interoperability, and scalability. The result
is a performance system which has evolved into a leading framework for parallel
performance evaluation and problem solving. This paper presents the current state
of TAU, overviews the design and function of TAU’s main features, discusses best
practices of TAU use, and outlines future development.

1 Introduction

Scalable parallel systems have always evolved together with the tools used to ob-
serve, understand, and optimize their performance. Next-generation parallel com-
puting environments are guided to a significant degree by what is known about
application performance on current machines and how performance factors might
be influenced by technological innovations. State-of-the-art performance tools play
an important role in helping us understand application performance and allowing
us to focus our attention on future performance concerns. Therefore, performance
technology must keep pace with the growing complexity of next-generation parallel
platforms if they are to contribute to the present and future promises of high-end par-
allel computing (HEC). We will need a robust performance frameworks that can pro-
vide both flexible and portable empirical performance observation capabilities at all
levels of a system. In short, mapping low-level behavior to high-level performance
abstractions to be understood within a parallel programming paradigm. It will be a
challenge to develop such a parallel performance systems. It will need to respond to

Performance Research Lab, University of Oregon, Eugene, OR, e-mail: {malony,sameer,
amorris,scottb,wspear,khuck,anataraj}@cs.uoregon.edu

169

mailto:malony@cs.uoregon.edu
mailto:sameer@cs.uoregon.edu
mailto:amorris@cs.uoregon.edu
mailto:scottb@cs.uoregon.edu
mailto:wspear@cs.uoregon.edu
mailto:khuck@cs.uoregon.edu
mailto:anataraj@cs.uoregon.edu

170 Allen D. Malony et al.

new requirements for performance evaluation, problem diagnosis, and optimization
as parallel computing technology extends it reach to high-end machines of massive
scale.

There are four design objectives for parallel performance systems that will al-
low then to keep pace with HEC advancement. First, a performance system should
be flexible. It should give maximum opportunity for configuring performance ex-
periments that are of interest. In general, flexibility in empirical performance eval-
uation implies freedom in experiment design and in the selection and control of
experiment mechanisms. Using tools that otherwise limit the type and structure of
performance mechanisms will restrict scope of the application that can be evalu-
ated. Second, a performance system should be portable, to allow consistent cross-
platform performance problem solving. To achieve Portability one should look for
common abstractions in performance methods and how these techniques can be
reused across different computing environments. Lack of a portable performance
evaluation environment forces users to adopt different techniques on different sys-
tems, even for common performance analysis tasks. A third objective is integration.
An integrated performance system, by using explicit interfaces and common data
formats, can work together as a unified framework. Finally, an interoperable paral-
lel performance system allows performance technology from other tool suites to be
leveraged for extended capability.

The TAU Performance System [39, 22, 38, 44] is the product of fifteen years
of development to create a robust, flexible, portable, and integrated framework and
toolset for performance instrumentation, measurement, analysis, and visualization
of large-scale parallel computer systems and applications. The success of the TAU
project represents the combined efforts of researchers at the University of Oregon
and colleagues at the Research Centre Jülich and Los Alamos National Laboratory.
This paper gives an overview of TAU’s system architecture and current suite of
tools, as well as discussing the best practices when using TAUĖxamples will be
drawn from recent work highlighting some of TAU’s new features. Given TAU’s
continued evolution as a parallel performance system, the paper will also provide a
forecast of what is on the horizon.

2 TAU Performance System Design and Architecture

TAU is designed as a tool framework, wherein tool components and modules inte-
grate and coordinate their operations using well-defined interfaces and data formats.
The TAU framework architecture, shown in Fig. 1, is organized into three primary
layers – instrumentation, measurement, and analysis – within each layer multiple
modules are available and can be configured in a flexible manner by the user. The
following sections discuss the layers in more detail, but now let us discuss the over-
all design decisions that governed TAU’s development.

TAU is a performance systems based on direct performance observation, whereby
execution actions of interest are exposed as events to the performance system

Evolution of a Parallel Performance System 171

Fig. 1 TAU framework architecture

through direct insertion of instrumentation in the application, library, or system
code, at locations where these actions arise. In general, these actions reflect some
execution state, most commonly a result of a code location being reached (e.g., en-
try in a subroutine). However, it could also include a change in data. The key point
is that the observation mechanism is direct. Generated events are made visible to
the performance system in this way and contain implicit meta information about
the associated action. Thus, for any performance experiment using direct observa-
tion, the performance events of interest must be decided beforehand and necessary
instrumentation inserted.

The role of the instrumentation layer in TAU is to provide support for generating
events at the appropriate execution points in the code. Since performance events of
interest can be found at different places in the code, TAU provides a range of instru-
mentation capabilities to gather events from all these locations. The instrumentation
function is simple: to insert code that calls the TAU measurement system when a
specific action occurs and to gather the appropriate performance data.

TAU supports two classes of events: atomic events and interval events. An
atomic event denotes a single action. When it occurs, the measurement system has
the opportunity to obtain the performance data associated with that action at that
time. In contrast, a interval event is really a pair of events: begin and end. The mea-
surement system uses performance data obtained from each event to calculate a
combined performance result (e.g., the time spent in a subroutine from entry (be-
ginning of the interval) to exit (end of the interval)).

In addition to performance events, direct performance observation methods must
obtain information about parallel execution context in order to interpret the parallel
performance data. TAU was originally conceived [39] with the goal of supporting
alternative models of parallel computation, from shared memory multi-threading to
distributed memory message passing to mixed-mode parallelism. Instead of limit-
ing attention to a sub-class of computation models, thereby reducing tool coverage,
TAU defines an abstract computation model for parallel systems that captures gen-
eral architecture and software features and can be mapped straightforwardly to exist-

172 Allen D. Malony et al.

ing complex system types [38]. The practical consequence is that TAU tags parallel
performance measurements with node:context:thread information. In the model, a
node is defined as a physically distinct machine with one or more processors sharing
a physical memory system (i.e., a shared memory multiprocessor (SMP)). A context
is a distinct virtual address space within a node providing shared memory support
for parallel software execution. Multiple threads of execution can be active within a
context.

Given performance events and their parallel context, TAU supports the two dom-
inant methods of measurement for direct performance observation: profiling and
tracing. Profiling methods compute performance statistics at runtime based on mea-
surements of atomic or interval events. Tracing, on the other hand, records the mea-
surement information for each event (including when it occurred) in a file for future
analysis. In profiling, the number of recorded events is fixed, whereas tracing will
generate a record for every event occurrence. The TAU performance system sup-
ports both parallel profile and parallel trace analysis with profiling tools developed
internally as well as tracing tools incorporated from other groups.

Overall, TAU’s design has proven to be robust, sound, and highly adaptable to
each generations of parallel systems. In recent years, we have extended the TAU
performance system architecture to support kernel-level performance integration
[29], performance monitoring [32, 30], and collaboration through the TAU Por-
tal [45]. The extensions have been moderate, mainly in the development of new
interfaces for performance data access and reporting.

In the next sections, TAU’s instrumentation, measurement, and analysis technol-
ogy is described in more detail. Description of basic TAU usage is also given as
brief introduction to its more advanced capabilities.

3 TAU Instrumentation

Instrumentation for direct performance observation involves inserting code (a.k.a.
probes) to make performance events visible to the measurement substrate and to
provide event control. From TAU’s perspective, the execution of a program is re-
garded as a sequence of significant performance events. As the events are triggered
during execution, the probes engage the TAU performance measurement infrastruc-
ture to obtain the performance data. Logically, instrumentation is separated from
measurement in TAU. The measurement options will determine what performance
data is recorded and the type of measurement made for the events, whether profile
or trace. On the other hand, instrumentation is focused primarily on event creation
and code insertion, how the events are created, where instrumentation is generated,
and how code gets placed in the program. 1

1 The TAU User’s Manual [46] gives full details on how to use the TAU instrumentation tools.
Due to space limitations, we concentrate here instead on the instrumentation approach.

Evolution of a Parallel Performance System 173

3.1 Event Interface

Instrumentation is accomplished by inserting probes in the source code of an ap-
plication. The probes are generated from the TAU event interface, which allows
events to be defined, their visibility controlled, and their runtime data structures to
be created. Each event has type (atomic, interval), is part of an event group, and has
a unique event name represented as a character string. The event name is a power-
ful way of encoding event information. At runtime, TAU maps the event name to a
efficient event ID which is used elsewhere in the event interface.

It is important to understand the reasoning behind event names and IDs. IDs
are integers that get generated on event creation and act as handles for events
during measurement. However, assigning a uniform ID for the same event across
node:context:thread boundaries is problematic. Event names make it possible to
resolve different IDs to the same event. In addition, it makes dynamic event gener-
ation possible. In general, a new event can be created at any time during execution
as long as the event name is unique for the thread of execution. This allows for
instance, runtime context information to be used in forming an event name (context-
based events), or values of routine parameters to be used to distinguish call variants,
(parameter-based events).

In addition to the atomic and interval event types we discussed above, TAU de-
fines a phase event to identify program phases. This is a type of “logical event” in
the sense that it associates logical program aspects with an event, and distinguishes
it through separate interfaces routines to the measurement system. They are equiv-
alent to interval events, but have different measurement results. We discuss phases
further below.

TAU also defines a sample event which is associated with an interrupt-based,
measurement sampling procedure. A sample event acts like an atomic event, but is
set up through a separate interface which connects it to an interrupt handler. Once
enabled, an interrupt handler is invoked when the corresponding interrupts occur
during program execution. Control of interrupt period and selection of system prop-
erties to track them are provided in the sample event interface.

The purpose of the event control in TAU is to enable and disable a group of
events at a coarse level. This allow the focus of instrumentation to be refined at
runtime. All groups can be disabled and any set of groups can be selectively enabled.
Similarly, all event groups can be enabled initially and then selectively disabled. It
is also possible to individually enable and disable events. TAU uses this support
internally to throttle high overhead events during measurement.

3.2 Instrumentation Mechanisms

Instrumentation can be introduced in a program at several levels of the program
transformation process. In fact, it is important to realize that events and event infor-
mation can be between levels and a complete performance view may require contri-

174 Allen D. Malony et al.

bution across levels [37]. For these reasons, TAU supports several instrumentation
mechanisms based on the code type and transformation level: source (manual, pre-
processor, library interposition), binary/dynamic, interpreter, component, and vir-
tual machine. There are multiple factors that affect the choice of what level to in-
strument, including accessibility, flexibility, portability, concern for intrusion, and
functionality. It is not a question of what level is ’correct’ because there are trade-
offs for each and different events are visible at different levels. The goal in the
TAU performance system is to provide support for several mechanisms that might
together be useful.

3.2.1 Source Instrumentation

Instrumenting at the source level is the most portable instrumentation approach.
Source-level instrumentation can be placed at any point in the program and it al-
lows a direct association between language-and program-level semantics and perfor-
mance measurements. Using cross-language bindings, TAU implements the event
interface in C, C++, Fortran, Java, and Python languages, and provides a higher-
level specification in SIDL [20, 40] for cross-language portability and deployment
in component-based programming environments[3].

Programmers can use the event API to manually annotate the source code of their
program. For certain application projects, this may be the preferred way to control
precisely where instrumentation is placed. Of course, manual instrumentation can
be tedious and error prone. To address these issues, we have developed a powerful
automatic source instrumentation tool, tau instrumentor, for C, C++, and Fortran,
based on the program database toolkit (PDT) [21]. The TAU source instrumentor
tool can place probes at routine and class method entry/exit, on basic block bound-
aries, in outer loops, and as part of component proxies. PDT’s robust parsing and
source analysis capabilities enable the TAU instrumentor to work with very large
and complex source files and inserts probes at all possible points.

In contrast to manual instrumentation, automatic instrumentation needs direction
on what performance events of interest should be instrumented for in a particular
performance experiment. TAU provides support for selective instrumentation in all
automatic instrumentation schemes. An event specification file defines which of the
possible performance events to instrument by grouping the event names in include
and exclude lists. Regular expressions can be used in event name specifiers and file
names can be given to restrict instrumentation focus. Selective instrumentation in
TAU has proven invaluable as a means to customize performance experiments and
to easily “select out” unwanted performance events, such as high frequency, small
routines that may generate excessive measurement overhead.

Automatic source instrumentation is, in essence, a preprocessor style of instru-
mentation. There are other preprocessing instrumentation features implemented in
TAU. For instance, we can instrument C malloc/ f ree calls to use TAU’s mem-
ory allocation/deallocation tracking package by redirecting the references to invoke
TAU’s corresponding memory wrapper calls with the added information about the

Evolution of a Parallel Performance System 175

line number and the file. The atomic event interface is used in this case. I/O instru-
mentation is also implemented in this manner.

Library wrapping is a form of source instrumentation whereby the original li-
brary routines are replaced by instrumented versions which in turn call the original
routines. The problem is how to avoid modifying the library calling interface. Some
libraries provide support for interposition, where an alternative name-shifted inter-
face to the native library is provided and weak bindings are used for application code
linking. Here, library routines can be accessed with both its name shifted interface
and the native interface. The advantage of this approach is that library-level instru-
mentation can be implemented by defining a wrapper interposition library layer that
inserts instrumentation calls before and after calls to the native routines. It is also
possible through interposition to access arguments passed to the native library.

Like other tools, TAU uses MPI’s support for interposition (PMPI [13]) for per-
formance instrumentation purposes. A combination of atomic and interval events are
used for MPI. The atomic events allow TAU to track the size of messages in certain
routines, for instance, while the interval events capture performance during routine
execution. TAU provides a performance instrumented PMPI library for both MPI-1
and MPI-2. In general, automatic library wrapping, with and without interposition,
is possible with TAU’s instrumentation tools.

Source instrumentation can also be provided in source-to-source translation
tools. TAU uses the Opari tool [24] for instrumenting OpenMP applications. Opari
rewrites OpenMP directives to introduce instrumentation based on the POMP/
POMP-2 [24] event model. TAU implements a POMP-compatible interface that
allows OpenMP (POMP) events to be instantiated and measured. In general, source-
to-source translation systems can provide a powerful infrastructure for instrumenta-
tion support.

3.2.2 Binary / Dynamic Instrumentation

Source instrumentation is possible only if the source code is available. TAU lever-
ages other technologies to implement instrumentation support at the binary code
level. In particular, DyninstAPI [8] is a dynamic instrumentation package that al-
lows a tool to insert code snippets into a running program using a portable C++
class library. For DyninstAPI to be useful with the TAU measurement system, calls
to the event API must be correctly constructed in the code snippets. TAU can then
instrument a program at runtime, or alternatively it can re-write the executable im-
age with instrumentation included. The current set of events available to TAU with
DyninstAPI are limited to routine entry/exit. It is possible to use selective instru-
mentation for routine events. DyninstAPI creates a function mapping table to aid in
efficient performance measurement. Code snippets are then inserted at entry and exit
transition points in each routine. Dynaprof [26] is another tool that uses DyninstAPI
for instrumentation and TAU for event creation and measurement.

176 Allen D. Malony et al.

3.2.3 Interpreter-Based Instrumentation

Interpreted language environments present an interesting target for TAU integration.
Often such environments support easy integration with native language modules. In
this case, it is reasonable to attempt to recreate the source-based instrumentation in
the interpreted language, calling through the native language support to the TAU
measurement system. However, it is also true that interpreted language environment
have built-in support for identifying events and monitoring runtime system actions.

TAU has been integrated with Python by leveraging the Python interpreter’s de-
bugging and profiling capabilities to instrument all entry and exit calls. By including
a TAU package and passing the top level routine as a parameter to the package’s run
method, all Python routines invoked subsequently are instrumented automatically at
runtime. A TAU interval event is created when a call is dispatched for the first time.
At routine entry and exit points, TAU’s Python API is invoked to start and stop the
interval events. TAU’s measurement library is loaded by the interpreter at runtime.
Since shared objects are used in Python, instrumentation from multiple levels see
the same runtime performance data.

Python is particularly interesting since it can be used to dynamically link and con-
trol multi-language executable modules. This raises the issue of how to instrument a
program constructed from modules derived from different languages and composed
at runtime. Because TAU supports multiple instrumentation mechanisms, it is pos-
sible to use a combination of them for these types of interpreter-based, dynamically-
composed applications.

3.2.4 Instrumentation of Component Software

Component technology extends the benefits of scripting systems and object-oriented
design to support reuse and interoperability of component software, regardless of
language and location [42]. A component is a software object that implements cer-
tain functionality and has a well-defined interface that conforms to a component
architecture defining rules for how components link and work together [3]. It con-
sists of a collection of ports, where each port represents a set of functions that are
publicly available. Ports implemented by a component are known as provides ports,
and other ports that a component is uses are known as uses ports.

The Common Component Architecture (CCA) [9] is a component-based method-
ology for developing scientific simulation codes. The architecture consists of a
framework which enables components (embodiments of numerical algorithms and
physical models) to work together. Components are peers and derive no implemen-
tation from others. Components publish their interfaces and use interfaces published
by others. Components publishing the same interface and with the same function-
ality (but perhaps implemented via a different algorithm or data structure) may be
transparently substituted for each other in a code or a component assembly. Com-
ponents are compiled into shared libraries and are loaded in, instantiated, and com-
posed into a useful code at runtime.

Evolution of a Parallel Performance System 177

How should component-based programs be instrumented for performance mea-
surement? The challenge here is in supporting an instrumentation methodology that
is consistent with component-based software engineering. The approach taken with
TAU for CCA was to develop a TAU performance component that other compo-
nents could use for performance measurement. The TAU instrumentation API is
thus recreated as the performance component’s interface, supporting event creation,
event control, and performance query. There are two ways to instrument a com-
ponent based application using TAU. The first requires calls to the performance
component’s measurement port to be added to the source code. This is useful for
fine-grained measurements inside the component. The second approach interposes
a proxy component in front of a component, thus intercepting the calls to its provides
port. In this case, for each edge that represents a port in the component connection
graph, we can interpose the proxy along that edge. A proxy component implements
a port interface and has provides and uses ports. The provides port is connected to
the caller’s uses port and its uses port is connected to the callee’s provides port.

To aid in the construction of proxies, it is important to note that we only need
to construct only one proxy component for each type of port. Different components
that implement a given port use the same proxy component. To automate the pro-
cess of creating a proxy component, TAU’s proxy generator uses PDT to parse the
source code of a component that implements a given port. It infers the arguments
and return types of a port and its interfaces and constructs the source code of a
proxy component, which when compiled and instantiated in the framework allows
us to measure the performance of a component without any changes to its source or
object code. This provides a powerful capability to build performance-engineered
scientific components that can provide computational quality of service [33] and
allows us to build intelligent, performance-aware components.

3.3 Instrumentation Utilities

To deliver the richness of instrumentation TAU provides for direct performance
observation, it helps to have utilities to reduce the impact on users. Where this is
most evident is in building applications with source instrumentation.

To simplify the integration of the source instrumentor and the MPI wrapper li-
brary in the build process, TAU provides a set of compiler wrappers: tau_cc.sh,
tau_cxx.sh and tau_f90.sh that can be invoked instead of a regular compiler.
For instance, in an application makefile, the variable F90=mpxlf90 is modified to
be F90=tau_f90.sh.

This tool invokes the compiler internally after extracting the names of source or
object files and compilation parameters. During compilation, it invokes the parser
from PDT, then the tau instrumentor for inserting measurement probes into the
source code, and compiles the instrumented version of the source to generate the de-
sired object file. It can distinguish between object code creation and linking phases
of compilation and during linking, it inserts the MPI wrapper library and the TAU

178 Allen D. Malony et al.

measurement library in the link command line. In this manner, a user can easily in-
tegrate TAU’s portable performance instrumentation in the code generation process.
Optional parameters can be passed to all four compilation phases.

Utilities are also helpful in reducing application reprogramming required just to
get instrumentation enabled, such as when an external library must be instrumented
without modifying its source. This may be necessary for libraries where the source
is not available or for when the library is cumbersome to re-build. TAU’s wrap-
per generator, tau_wrap may be used for such cases. This PDT-based tool will
read header files of the original library and generate a new library wrapper header
file with preprocessor DEFINE macros to change routine names to TAU routines
names. A new wrapped library is created with these instrumented TAU routines,
which then calls the original library. This is very similar to what is done for C
malloc/free and I/O wrapping, except tau_wrap can be used for any library.

4 TAU Measurement

The measurement system is the heart and soul of TAU. It has evolved over time to
a highly robust, scalable infrastructure portable to all HPC platforms. The instru-
mentation layer defines which events will be measured and the measurement sys-
tem selects which performance data metrics to observe. Performance experiments
are created by selecting the key events of interest and by configuring measurement
modules together into a particular composition [11]. TAU provides portable timing
support, integration with hardware performance counters, both parallel profiling and
parallel tracing, runtime monitoring, and kernel-level measurement.

4.1 Measurement System Design

As shown in Fig. 1, the design of the measurement system is flexible and modular.
It is responsible for creating and managing performance events, making measure-
ments from available performance data sources, and recording profile and trace data
for each node:context:thread in the execution. Compile-time and execution-time op-
tions govern measurement operation. In addition, runtime support is implemented
to control TAU measurement function and focus during execution.

TAU implements a sophisticated runtime infrastructure for gaining both mea-
surement efficiency and robustness. A core internal component is the runtime rep-
resentation of the event callstack that captures the nesting relationship of interval
performance events. The fact that the performance events are not required to be
only routine entry/exit events makes the TAU event callstack a powerful measure-
ment abstraction. In particular, the event callstack is key for managing execution
context, allowing TAU to associate this context to the events being measured.

Evolution of a Parallel Performance System 179

The TAU measurement system implements another novel performance obser-
vation feature called performance mapping [37]. The ability to associate low-level
performance measurements with higher-level execution semantics is important to
understanding parallel performance data with respect to the application’s structure
and dynamics. Performance mapping provides a mechanism whereby performance
measurements, made for one instrumented event, can be associated with another
(semantic) event at a different level of performance observation. TAU has imple-
mented performance mapping as an integral part of its measurement system and
uses it to implement sophisticated capabilities not found in other tools.

The core measurement support for parallel profiling maintains internal perfor-
mance data structures for atomic and interval events, called the profile table. New
events are created in the profile table by creating a new table entry, recording the
event name, and linking in the storage allocated for the event performance data.
What is important to understand is the profile table is generic, able to be used for
all atomic and interval events, regardless of their complexity. Event type and con-
text information can be recorded in event names and the TAU measurement system
hashes and maps these names to determine when a new event has been created or
already exists.

TAU’s tracing infrastructure focuses on providing efficient, portable, and scal-
able trace record buffering and I/O. In recent years, it has also become important
to interface the measurement infrastructure with sophisticated tracing libraries pro-
vided by VTF3 [36], OTF [19], and EPILOG [25]. In contrast to parallel profiling,
the measurement system must be concerned with aspects of node:context:thread
parallel interactions, especially with regard to timestamp synchronization.

4.2 Performance Data Sources

TAU provides access to various sources of performance data. Time is perhaps the
most important and ubiquitous performance data metric, but it comes in various
forms on different system platforms. TAU provides the user with a flexible choice
of time sources based on system availability. At the same time, it abstracts the timer
interface so as to insulate the rest of the measurement system from the nuances
of different timer implementations. In a similar manner, TAU integrates alternative
interfaces for access to hardware counters (PAPI [5] and PCL [4] are supported) and
other system-accessible performance data sources. Through TAU configuration, all
of the links to these packages are resolved.

Within the measurement system, TAU allows for multiple sources of perfor-
mance data to be concurrently active, making it possible for both profiling and trac-
ing to record multiple performance data. TAU also recognizes that some perfor-
mance data may come directly from the parallel program. This is supported in two
ways. First, the TAU API allows the user to specify a routine to serve as a counter
source during performance measurement. Second, the TAU measurement system

180 Allen D. Malony et al.

supplies some internal events and counters that can be used to track program-related
performance (e.g., tracking memory utilization and sizes of messages).

4.3 Parallel Profiles

Profiling characterizes the behavior of an application in terms of its aggregate per-
formance metrics. Profiles are produced by calculating statistics for the selected
measured performance data. Different statistics are kept for interval events and
atomic events. For interval events, TAU computes exclusive and inclusive metrics
for each event. The performance data here must be from monotonically increas-
ing data sources (counter). Typically one source is measured (e.g., time), but the
user may configure TAU with the -MULTIPLECOUNTERS configuration option
and specify up to 25 metrics (by setting environment variables COUNTER[1-25])
to track during a single execution. For atomic events, the statistics measured in-
clude maxima, minima, mean, standard deviation, and the number of samples.
When the program execution completes, a separate profile file is created for each
node:context:thread instance. The profiling system is optimized to work with the
target platform and the profiling operations are very efficient.

The TAU profiling system supports several profiling variants. The most basic
and standard type of profiling is called flat profiling. If A is an interval event, flat
profiles record the exclusive performance for A (i.e., performance while in A). Any
time spent in events nested within A will be represented in A’s profile as inclusive
time, but it will not be differentiated with respect to the nested events. Flat profiles
also keep information on the number of times A occurs and the number of times
nested events occurs.

TAU can also generate parallel profiles that show performance with respect to
event nesting (callstack) relationships. In general, callpath profiling determines the
distribution of performance with respect to dynamic event nesting (calling paths)
of an application. We speak of the length of a callpath as the number of events
represented in the callpath (nesting chain). A callpath profile of length one is a flat
profile. A callpath profile of length two is often referred to as a callgraph profile. A
callpath of length k represents a sequence of k−1 nested events with an event, A, at
the head of the callpath. The key concept to understand for callpath profiling is that
a callpath itself is represented as a single performance event. TAU can generate a
callpath profile of any length k (including k = ∞), producing a profile where every
callpath of length ≤ k is represented.

TAU’s callpath profiling will generate a profile for each callpath of a length des-
ignated by TAU CALLPATH DEPTH, not just those that include the topmost root
event. For some performance evaluation studies, it is desired to see how the perfor-
mance is distributed across program parts from a top-down, hierarchical perspective.
Thus, a parallel profile that showed how performance data was distributed at differ-
ent levels of an unfolding event call tree could help to better understand performance
behavior. TAU’s implementation of calldepth profiling does just that. It allows the

Evolution of a Parallel Performance System 181

user to configure TAU with the -DEPTHLIMIT option and specify in the the envi-
ronment variable TAU DEPTH LIMIT how far down the event call tree to observe
performance. In this case, the profiles created show performance for each callpath
in the rooted call tree pruned to the chosen depth.

While callpath profiling and calldepth profiling reveal the distribution of perfor-
mance event based on nesting relationships, it is equally interesting to observe per-
formance data relative to an execution state. The concept of a phase is common in
scientific applications, its how developers think about the structural, logical, and nu-
merical aspects of a computation, and therefore how performance can be interpreted.
Phase profiling is an approach to profiling that measures performance relative to the
phases of execution. TAU supports an interface to create phases (phase events) and
to mark their entry and exit. Internally in the TAU measurement system, when a
phase, P, is entered, all subsequent performance will be measured with respect to P
until it exits. When phase profiles are recorded, a separate parallel profile is gener-
ated for each phase. Phases can be nested, in which case profiling follows normal
scoping rules and is associated with the closest parent phase obtained by traversing
up the callstack. When phase profiling is enabled, each thread of execution in an
application has a default phase corresponding to the top level event. When phase
profiling is not enabled, phases events acts just like interval events.

Recently, we have implemented support in TAU for recording of the current val-
ues of parallel profile measurements while the program is being executed. We call
such a profile a parallel profile snapshot. The objective is to collect multiple par-
allel profile snapshots to generate a time-sequenced representation of the changing
performance behavior of a program. In this manner, by analyzing a series of profile
snapshot, temporal performance dynamics are revealed. Figure 2 shows a high-level
view of the performance profile snapshot workflow.

TAU measurement

{

1

. . .

on parallel system
application run

parallel profile snapshots

{{

t2tn t

......

ParaProf

Fig. 2 Parallel profile snapshot process

4.4 Tracing

Parallel profiling aggregates performance metrics for events, but cannot highlight
the time varying aspect of the parallel execution. TAU implements robust, portable,

182 Allen D. Malony et al.

and scalable parallel tracing support to log events in time-ordered tuples containing
a time stamp, a location (e.g., node, thread), an identifier that specifies the type of
event, event-specific information, and other performance-related data e.g., hardware
counters). All performance events are available for tracing. With tracing enabled, ev-
ery node:context:thread instance will generate a trace for instrumented events. TAU
will write these traces in its modern trace format as well as in VTF3 [36], OTF [19],
and EPILOG [25] formats. TAU writes performance traces for post-mortem analy-
sis, but also supports an interface for online trace access. This includes mechanisms
for online and hierarchical trace merging [7, 6].

4.5 Measurement Overhead

The performance events selected for observation depend mainly on those aspects
of the execution that must be measured to satisfy the requirements for performance
analysis. However, choice of performance events also depends on the scope and res-
olution of the performance measurement desired, as this impacts the accuracy of the
measurement. The greater the degree of performance instrumentation in a program,
the higher the likelihood that the performance measurements will alter the way the
program behaves, an outcome termed performance perturbation [23]. In general,
most performance tools, including TAU address the problem of performance per-
turbation indirectly by reducing the overhead of performance measurement.

We define performance intrusion as the amount of performance measurement
overhead incurred during a performance experiment. We define performance accu-
racy as the degree to which our performance measures correctly represent “actual”
performance. That is, accuracy is associated with error. If we are trying to measure
the performance of small events, the error will be higher because of the measure-
ment uncertainty that exists due to the relative size of the overhead versus the event.
If we attempt to measure a lot of events, the performance intrusion may be high
because of the accumulated measurement overhead, regardless of the measurement
accuracy for that event.

Performance experiments should be concerned with both performance intrusion
and performance accuracy, especially in regards to performance perturbation. TAU
is a highly-engineered performance system and delivers excellent measurement ef-
ficiencies and low measurement overhead. However, it is easy to naively construct
an experiment that will result in significant performance intrusion. TAU implements
support to help the user manage the degree of performance instrumentation as a way
to better control performance intrusion. The approach is to help the user identify per-
formance events that have either poor measurement accuracy (i.e., they are small) or
a high frequency of occurrence. Once these events are identified, the event selection
mechanism described above can be used to reduce the instrumentation degree in the
next experiment, thereby reducing performance intrusion in the next program run.

In addition, TAU implements two runtime techniques for profiling to address
performance overhead. The first is event throttling. Here TAU regulates the active

Evolution of a Parallel Performance System 183

performance events by watching to see if performance intrusion is excessive. Envi-
ronment variables TAU THROTTLE PERCALL and TAU THROTTLE NUMCALLS
can be set to disable events that exceed these thresholds at runtime. The second
is overhead compensation. Here TAU estimate how much time is spent in various
profiling operations. TAU will then attempt to compensate for these profiling over-
heads while these events are being measured. This is accomplished by subtracting
the estimated amount of time dedicated to profiling when calculating time spent
for an event. TAU can also compensate for metric besides time (e.g. floating-point
operations). To enable measurement compensation the TAU measurement library
must be configured with the -COMPENSATE option.

5 TAU Analysis

As the complexity of measuring parallel performance increase, the burden falls on
analysis and visualization tools to interpret the performance information. If mea-
surement is the heart and soul of the TAU performance system, the analysis tools
bring TAU to life. As shown in Fig. 1, TAU includes sophisticated tools for parallel
profile analysis and leverages existing trace analysis functionality available in robust
external tools, including the Vampir [28] and Expert [49] tools. Let us focus on our
work in parallel profile analysis and parallel performance data mining. The S3D [41]
parallel application, a high-fidelity finite difference solver for compressible reacting
flows, is used as an example.

5.1 Parallel Profile Management

The TAU performance measurement system is capable of producing parallel profiles
for thousands of node:context:thread instances consisting of hundreds of events.
Scalable analysis tools are required to handled this large amount of detailed per-
formance information. Figure 3 shows TAU’s parallel profile analysis environment.
It consists of a framework for managing parallel profile data, PerfDMF [17] (ex-
panded in the right figure), and the parallel profile analysis tools, ParaProf [2]. The
complete environment is implemented in Java.

PerfDMF provides a common foundation for parsing, storing, and querying par-
allel profiles from multiple performance experiments. It supports the importing
profile data from tools other than TAU through the use of embedded translators.
These are built with PerfDMF’s utilities and target a common, extensible paral-
lel profile representation. Currently supported profile formats include gprof[15],
TAU profiles[38], dynaprof[26], mpiP[47], HPMtoolkit (IBM)[10], and Perfsuite
(psrun)[1]. Profile data can also exported as a common XML file.

The profile database component is the center of PerfDMF’s persistent data stor-
age. It builds on robust SQL relational database engines, including PostgreSQL[35],

184 Allen D. Malony et al.

Fig. 3 TAU parallel profiling environment: ParaProf and PerfDMF

MySQL[27], Oracle[34], DB2[18] and Derby [14]. The database component must
be able to handle both large-scale performance profiles, consisting of many events
and threads of execution, as well as many profiles from multiple performance ex-
periments.

To facilitate performance analysis development, the PerfDMF architecture in-
cludes a well-documented data management API to abstract query and analysis op-
eration into a more programmatic, non-SQL, form. This layer is intended to com-
plement the SQL interface, which is directly accessible by the analysis tools, with
dynamic data management and higher-level query functions. It is anticipated that
many analysis programs will utilize this API for implementation. Access to the SQL
interface is provided using the Java Database Connectivity (JDBC) API.

5.2 Parallel Profile Analysis

The ParaProf parallel profile analysis tool included in TAU is capable of processing
the richness of parallel profile information produced by the measurement system,
both in terms of the profile types (flat, callpath, phase, snapshots) as well as scale.
ParaProf provides the users with a highly graphical tool for viewing parallel pro-
file data with respect to different viewing scopes and presentation methods. Profile
data can be inputed directly from a PerfDMF database and multiple profiles can be
analyzed simultaneously.

To get a brief sense of what ParaProf can produce, consider the S3D [41] parallel
application as an example. Recently, we investigated the performance of S3D on a
hybrid Cray system consisting of XT3 and XT4 processing nodes. Parallel perfor-
mance profiles were produced when S3D ran on 6400 cores. ParaProf analyzed the
full profile and generated the three-dimensional view shown in Fig. 4, left display.
Due to the XT3 and XT4 memory performance differences, imbalances resulted in
the S3D computation. These are clearly apparent in the ParaProf display. The right
display in the figure is a ParaProf scatterplot showing clustering relationships for
three significant events, color-code by processing core type.

Evolution of a Parallel Performance System 185

Fig. 4 ParaProf displays of S3D performance on hybrid Cray XT3/XT4 system

This example shows just a part of ParaProf’s capabilities. ParaProf can shows
parallel profile information in the form of bargraphs, callgraphs, scalable his-
tograms, and cumulative plots. In addition, ParaProf can use these views to display
profile snapshots (see Fig. 2, including with animation. ParaProf is also capable of
integrating multiple performance profiles for the same performance experiment but
using different performance metrics for each. Phase profiles are also fully supported
in ParaProf. Users can navigate easily through the phase hierarchy and compare the
performance of one phase with another. Figure 5 shows a phase profile display for
the Uintah application. Here grid patches were used to identify different computa-
tional phases.

Fig. 5 Parallel profile phases for Uintah grid patches

ParaProf is able to extend its analysis functionality in two ways. First, it is ca-
pable of calculating derived statistics from performance metrics. A simple example
of this is “floating point operations per second” derived from two metrics, “float-

186 Allen D. Malony et al.

ing point counts” and “time.” Second, ParaProf analysis can be programmed with
Python, using the Jython scripting interface.

5.3 Parallel Performance Data Mining

To provide more sophisticated performance analysis capabilities, we developed sup-
port for parallel performance data mining in TAU. PerfExplorer [16] is a framework
for performance data mining motivated by our interest in automatic parallel perfor-
mance analysis and by our concern for extensible and reusable performance tool
technology. PerfExplorer is built on PerfDMF and targets large-scale performance
analysis for single experiments on thousands of processors and for multiple exper-
iments from parametric studies. PerfExplorer addresses the need to manage large-
scale data complexity using techniques such as clustering and dimensionality re-
duction, and the need to perform automated discovery of relevant data relationships
using comparative and correlation analysis techniques. Such data mining operations
are engaged in the PerfExplorer framework via an open, flexible interface to statisti-
cal analysis and computational packages, including WEKA [48], the R system [43],
and Octave [12].

A performance data mining framework should support both advanced analysis
techniques as well as extensible meta analysis of performance results. Important
components for productive performance analytics are:

1. process control: for scripting analysis processes
2. persistence: for recording results of intermediate analysis
3. provenance: mechanisms for retaining analysis results and history
4. metadata: for encoding experiment context
5. reasoning/rules: for capturing relationships between performance data

However, the framework must support application developers in the performance
discovery process. The ability to engage in process programming, knowledge engi-
neering (metadata and inference rules), and results management allows data mining
environments to be created specific to the developer’s concerns. PerfExplorer is be-
ing reengineered as shown in Fig. 6 to support these goals.

6 Conclusion and Future Work

The TAU Performance System® has undergone several incarnations in pursuit of its
objectives: flexibility, portability, integration, interoperability, and scalability. The
outcome is a robust technology suite that has significant coverage of the perfor-
mance problem solving landscape for high-end computing. TAU follows a direct
performance observation methodology. We feel this approach is best suited for par-
allel performance instrumentation, measurement, and analysis since it is based on

Evolution of a Parallel Performance System 187

Fig. 6 TAU PerfExplorer data-mining architecture and component interaction

the observation of effects directly associated with the program’s execution, allowing
performance data to be interpreted in the context of the computation. However is-
sues of instrumentation scope and measurement intrusion have to be addressed, but
we have pursued these aggressively and enhanced the technology in several ways
during TAU’s lifetime.

TAU is still evolving. Although not reported here, we are adding support for per-
formance monitoring to TAU which is built on scalable monitoring infrastructure
from Supermon and MRNet [32, 30]. The goal here is to enable opportunities for
dynamic performance analysis by allowing global performance information to be
accessed at runtime. We are also extending our performance perspective to include
observation of kernel operation and its effect on application performance [31]. This
perspective will broaden to include parallel I/O and other sub-systems. Our vision
here is to evolve TAU to do whole performance evaluation for petascale optimiza-
tion. With the extreme scale and high integration in petascale platforms, it is difficult
to see how reductionist approaches to performance evaluation will be able to sup-
port optimization and productivity objectives. Performance of petascale applications
and systems should be evaluated in toto, to understand the effects of performance
interactions and identify opportunities for optimization based on fully informed de-
cisions. We intend to continue to evolve TAU to do so.

Acknowledgements This research is supported by the U.S. Department of Energy, Office of Sci-
ence, under contracts DE-FG03-01ER25501 and DE-FG02-03ER25561. It is also supported by
the U.S. National Science Foundation, Software Development for Cyberinfrastructure (SDCI), un-
der award NSF-SDCI-0722072. The work is further supported by U.S. Department of Defense,
High-Performance Computing Modernization Program (HPCMP), Programming Environment and
Training (PET) activities through Mississippi State University under the terms of Agreement No.
#GSO4TO1BFC0060. The opinions expressed herein are those of the author(s) and do not neces-
sarily reflect the views of the DoD or Mississippi State University.

188 Allen D. Malony et al.

References

1. Ahn, D., Kufrin, R., Raghuraman, A., Seo, J.: Perfsuite. http://perfsuite.ncsa.uiuc.edu/
2. Bell, R., Malony, A., Shende, S.: A portable, extensible, and scalable tool for paral-

lel performance profile analysis. In: Proc. EUROPAR 2003 Conference (EUROPAR03)
(2003). URL http://www.cs.uoregon.edu/research/paracomp/papers/
parco03/parco03.pdf

3. Bernholdt, D.E., Allan, B.A., Armstrong, R., Bertrand, F., Chiu, K., Dahlgren, T.L., Damevski,
K., Elwasif, W.R., Epperly, T.G.W., Govindaraju, M., Katz, D.S., Kohl, J.A., Krishnan, M.,
Kumfert, G., Larson, J.W., Lefantzi, S., Lewis, M.J., Malony, A.D., McInnes, L., Nieplocha,
J., Norris, B., Parker, S.G., Ray, J., Shende, S., Windus, T.L., Zhou, S.: A Component Ar-
chitecture for High-Performance Scientific Computing. Intl. Journal of High-Performance
Computing Applications ACTS Collection Special Issue (2005)

4. Berrendorf, R., Ziegler, H., Mohr, B.: PCL — The Performance Counter Library.
http://www.fz-juelich.de/zam/PCL/

5. Browne, S., Dongarra, J., Garner, N., Ho, G., Mucci, P.: A Portable Programming Interface
for Performance Evaluation on Modern Processors. International Journal of High Performance
Computing Applications 14(3), 189–204 (2000)

6. Brunst, H., Malony, A.D., Shende, S., Bell, R.: Online Remote Trace Analysis of Parallel Ap-
plications on High-Performance Clusters. In: Proceedings of the ISHPC Conference (LNCS
2858), pp. 440–449. Springer (2003)

7. Brunst, H., Nagel, W.E., Malony, A.D.: A Distributed Performance Analysis Architecture for
Clusters. In: Proceedings of the IEEE International Conference on Cluster Computing (Clus-
ter 2003), pp. 73–83. IEEE Computer Society (2003)

8. Buck, B., Hollingsworth, J.: An API for Runtime Code Patching. Journal of High Performance
Computing Applications 14(4), 317–329 (2000)

9. CCA Forum: The Common Component Architecture Forum. http://www.cca-forum.org
10. DeRose, L.: The Hardware Performance Monitor Toolkit. In: Proceedings of the Euro-

pean Conference on Parallel Computing (EuroPar 2001, LNCS 2150), pp. 122–131. Springer
(2001)

11. Dongarra, J., Malony, A.D., Moore, S., Mucci, P., Shende, S.: Performance Instrumentation
and Measurement for Terascale Systems. In: Proceedings of the ICCS 2003 Conference
(LNCS 2660), pp. 53–62 (2003)

12. Eaton, J.W.: Octave home page. URL http://www.octave.org/.
Http://www.octave.org/

13. Forum, M.P.I.: MPI: A Message Passing Interface Standard. International Journal of Super-
computer Applications (Special Issue on MPI) 8(3/4) (1994)

14. Foundation, T.A.S.: Apache derby. URL http://db.apache.org/derby/.
Http://db.apache.org/derby/

15. Graham, S., Kessler, P., McKusick, M.: gprof: A Call Graph Execution Profiler. SIGPLAN
’82 Symposium on Compiler Construction pp. 120–126 (1982)

16. Huck, K., Malony, A.: PerfExplorer: A performance data mining framework for large-scale
parallel computing. In: Conference on High Performance Networking and Computing (SC’05)
(2005)

17. Huck, K., Malony, A., Bell, R., Morris, A.: Design and Implementation of a Parallel Perfor-
mance Data Management Framework. In: Proc. International Conference on Parallel Process-
ing, ICPP-05 (2005)

18. IBM: IBM DB2 Information Management Software. http://www.ibm.com/software/data
19. Knüpfer, A., Brendel, R., Brunst, H., Mix, H., Nagel, W.E.: Introducing the Open Trace For-

mat (OTF). In: Proceedings of the 6th International Conference on Computational Science,
Springer Lecture Notes in Computer Science, vol. 3992, pp. 526–533. Reading, UK (2006)

20. Kohn, S., Kumfert, G., Painter, J., Ribbens, C.: Divorcing Language Dependencies from a Sci-
entific Software Library. In: Proceedings of the 10th SIAM Conference on Parallel Processing
(2001)

http://perfsuite.ncsa.uiuc.edu/
http://www.cs.uoregon.edu/research/paracomp/papers/parco03/parco03.pdf
http://www.cs.uoregon.edu/research/paracomp/papers/parco03/parco03.pdf
http://www.fz-juelich.de/zam/PCL/
http://www.cca-forum.org
http://www.octave.org/
http://www.octave.org/
http://db.apache.org/derby/
http://db.apache.org/derby/

Evolution of a Parallel Performance System 189

21. Lindlan, K.A., Cuny, J., Malony, A.D., Shende, S., Mohr, B., Rivenburgh, R., Rasmussen.,
C.: A Tool Framework for Static and Dynamic Analysis of Object-Oriented Software with
Templates. In: Proceedings of SC2000: High Performance Networking and Computing Con-
ference (2000)

22. Malony, A., Shende, S.: Distributed and Parallel Systems: From Concepts to Applications,
chap. Performance Technology for Complex Parallel and Distributed Systems, pp. 37–46.
Kluwer, Norwell, MA (2000)

23. Malony, A.D.: Performance Observability. Ph.D. thesis, University of Illinois at Urbana-
Champaign (1990)

24. Mohr, B., Malony, A.D., Shende, S., Wolf, F.: Towards a Performance Tool Interface for
OpenMP: An Approach Based on Directive Rewriting. In: Proceedings of Third European
Workshop on OpenMP (2001)

25. Mohr, B., Wolf, F.: KOJAK - A Tool Set for Automatic Performance Analysis of Parallel
Applications. In: Proceedings of the European Conference on Parallel Computing (EuroPar
2003, LNCS 2790), pp. 1301–1304. Springer (2003)

26. Mucci, P.: Dynaprof. http://www.cs.utk.edu/∼mucci/dynaprof
27. MySQL: MySQL: The World’s Most Popular Open Source Database
28. Nagel, W., Arnold, A., Weber, M., Hoppe, H.C., Solchenbach, K.: VAMPIR: Visualization

and Analysis of MPI Resources. Supercomputer 12(1), 69–80 (1996)
29. Nataraj, A., Malony, A.D., Shende, S., Morris, A.: Integrated parallel performance views.

Cluster Computing 11(1), 57–73 (2008). http://dx.doi.org/10.1007/s10586-007-0051-6
30. Nataraj, A., Morris, A., Malony, A.D., Arnold, D., Miller, B.: A Framework for Scalable,

Parallel Performance Monitoring using TAU and MRNet. Under submission
31. Nataraj, A., Morris, A., Malony, A.D., Sottile, M., Beckman, P.: The Ghost in the Ma-

chine: Observing the Effects of Kernel Operation on Parallel Application Performance. In:
ACM/IEEE SC2007. Reno, Nevada (2007)

32. Nataraj, A., Sottile, M., Morris, A., Malony, A.D., Shende, S.: TAUoverSupermon : Low-
Overhead Online Parallel Performance Monitoring. In: Europar’07: European Conference on
Parallel Processing (2007)

33. Norris, B., Ray, J., McInnes, L., Bernholdt, D., Elwasif, W., Malony, A., Shende, S.: Com-
putational quality of service for scientific components. In: Proceedings of the International
Symposium on Component-based Software Engineering (CBSE7). Springer (2004)

34. Oracle Corporation: Oracle. http://www.oracle.com
35. PostgreSQL: PostgreSQL: The World’s Most Advanced Open Source Database.

http://www.postgresql.org
36. Seidl, S.: VTF3 - A Fast Vampir Trace File Low-Level Management Library. Tech. Rep.

ZHR-R-0304, Dresden University of Technology, Center for High-Performance Computing
(2003)

37. Shende, S.: The Role of Instrumentation and Mapping in Performance Measurement. Ph.D.
thesis, University of Oregon (2001)

38. Shende, S., Malony, A.D.: The TAU parallel performance system. The International Journal
of High Performance Computing Applications 20(2), 287–331 (2006). URL http://www.
cs.uoregon.edu/research/tau

39. Shende, S., Malony, A.D., Cuny, J., Lindlan, K., Beckman, P., Karmesin, S.: Portable Profiling
and Tracing for Parallel Scientific Applications using C++. In: Proceedings of the SIGMET-
RICS Symposium on Parallel and Distributed Tools, SPDT’98, pp. 134–145 (1998)

40. Shende, S., Malony, A.D., Rasmussen, C., Sottile, M.: A Performance Interface for
Component-Based Applications. In: Proceedings of International Workshop on Performance
Modeling, Evaluation and Optimization, International Parallel and Distributed Processing
Symposium (2003)

41. Subramanya, R., Reddy, R.: Sandia DNS code for 3D compressible flows - Final Report. Tech.
Rep. PSC-Sandia-FR-3.0, Pittsburgh Supercomputing Center, PA (2000)

42. Szyperski, C.: Component Software: Beyond Object-Oriented Programming. Addison-Wesley
(1997)

http://www.cs.utk.edu/~mucci/dynaprof
http://dx.doi.org/10.1007/s10586-007-0051-6
http://www.oracle.com
http://www.postgresql.org
http://www.cs.uoregon.edu/research/tau
http://www.cs.uoregon.edu/research/tau

190 Allen D. Malony et al.

43. The R Foundation for Statistical Computing: R project for statistical computing (2007). URL
http://www.r-project.org. Http://www.r-project.org

44. University of Oregon: TAU Portable Profiling. http://tau.uoregon.edu
45. University of Oregon: TAU Portal. http://tau.nic.uoregon.edu
46. University of Oregon: Tuning and Analysis Utilities User’s Guide. http://www.cs.uoregon.edu/

research/paracomp/tau
47. Vetter, J., Chambreau, C.: mpiP: Lightweight, Scalable MPI Profiling. http://www.llnl.gov/

CASC/mpip/
48. Witten, ., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan

Kaufmann (2005). URL http://www.cs.waikato.ac.nz/˜ml/weka/
49. Wolf, F., Mohr, B., Dongarra, J., Moore, S.: Efficient Pattern Search in Large Traces through

Successive Refinement. In: Proceedings of the European Conference on Parallel Computing
(EuroPar 2004, LNCS 3149), pp. 47–54. Springer (2004)

http://www.r-project.org
http://www.r-project.org
http://tau.uoregon.edu
http://tau.nic.uoregon.edu
http://www.cs.uoregon.edu/research/paracomp/tau
http://www.cs.uoregon.edu/research/paracomp/tau
http://www.llnl.gov/CASC/mpip/
http://www.llnl.gov/CASC/mpip/
http://www.cs.waikato.ac.nz/~ml/weka/

Cray Performance Analysis Tools

Luiz DeRose, Bill Homer, Dean Johnson, Steve Kaufmann, and Heidi Poxon

Abstract The basic purpose of application performance tools, are to help the user
identify whether or not their application is running efficiently on the computing
resources available. However, the increasing system software and architecture com-
plexity, as well as the scale of the current and future high end supercomputers, bring
a new set of challenges to today’s performance tools. In order to be able to achieve
high performance on these peta-scale computing systems, users need a new infras-
tructure for performance analysis that can handle the challenges associated with
heterogeneous architectures with multiple levels of parallelism, hundreds of thou-
sands of computing elements, and novel programming paradigms. In this paper we
present the Cray Performance Analysis Tools, which is set on an evolutionary path
to address the application performance analysis challenges associated with these
massive computing systems.

1 Introduction

The traditional way of conducting performance analysis and tuning for high perfor-
mance computing has been an off-line approach with strong involvement from the
user. A variety of performance measurement, analysis, and visualization tools have
been created to help programmers tune and optimize their applications. These tools
range from source code profilers [7, 5, 2, 9], to sophisticated tracers for analysis of
communication [11, 8, 6, 13] and analysis of the memory subsystem [3], or a com-
bination of the above [1]. These performance tools typically rely on a five-phase
cycle, which consists of:

1. program instrumentation before execution
2. measurement of predefined specific events during execution

Cray Inc.
Mendota Heights, MN, USA

191

192 Luiz DeRose, Bill Homer, Dean Johnson, Steve Kaufmann, and Heidi Poxon

3. post-mortem and user-controlled analysis of the performance data
4. presentation of these data via textual and graphical tools
5. optimization of the program and its data structures under control of the user

The basic purpose of application performance tools, are to help the user identify
whether or not their application is running efficiently on the computing resources
available. To do this, most performance tools offer instrumentation, measurement
and presentation components for use in the five-phase cycle, and a few tools have
begun offering an analysis component to better assist users, where the most notable
work in the area of performance analysis tools are Paradyn [10], from the University
of Wisconsin, and KOJAK [12], from the Research Center Juelich.

The increasing system software and architecture complexity brings a new set of
challenges to both today’s users and performance tools. With systems designed to
run hundreds of thousands of computing elements and support multiple levels of
parallelism, the amount of performance data to collect, manage, and view has in-
creased to the point where traditional performance measurement techniques aren’t
adequate. Current techniques can generate excessive amounts of information mak-
ing it extremely difficult for users to correlate observations from data to understand
performance behavior. In addition, the vast amounts of data generated for perfor-
mance analysis degrades current tool response time and usability.

In order to be able to achieve high productivity with current and future high end
computing systems, users need a new infrastructure for performance analysis that
can handle the challenges associated with heterogeneous architectures with multi-
ple levels of parallelism, hundreds of thousands of computing elements, and novel
programming paradigms.

The Cray Performance Analysis Toolset, which includes instrumentation, mea-
surement, analysis and presentation components for the performance analysis and
code optimization cycle, is set on a revolutionary path to address the application
performance analysis challenges associated with these massive computing systems.

This paper describes the Cray Performance Analysis Tools, including the special
data analysis capability available that is designed to help the user identify potential
performance bottlenecks that can benefit from optimization. We conclude the paper
with a summary of next steps to be taken down that evolutionary path.

2 The Cray Performance Analysis Tools

The Cray Performance Analysis tools provide an integrated infrastructure for mea-
surement and analysis of computation, communication, I/O, and memory utilization.
The toolset allows developers to perform trace experiments on single-processor or
multiple-processor executables at the binary level with function granularity. It sup-
ports all programming models.

The Cray Performance Analysis Tools consist of two components: the CrayPat
Performance Collector and the Cray Apprentice2 Performance Analyzer. CrayPat
is the data capture tool, which is used to prepare user programs for performance

Cray Performance Analysis Tools 193

analysis experiments, to specify the kind of data to be captured during program exe-
cution, and to prepare plain text reports from the captured data or export the data for
use with other programs. Cray Apprentice2 is a post-processing data visualization
tool that is used to further explore and study the resulting captured data. The focus
of the Cray Performance Analysis Tools is on ease of use, flexibility, and intuitive
user interfaces.

The Cray Performance Analysis Tools include both an external or asynchronous
sampling mechanism, as well as an internal, or synchronous code instrumentation
mechanism which inserts hooks within the application. The toolset allows data to be
recorded either as a summation of events over time, or as a sequence of events over
time. More details on when and how performance data is collected and recorded are
discussed under the following tool component sections.

2.1 Program Instrumentation

When performing code instrumentation, CrayPat allows users to select the functions
to be instrumented by group, by user function, or by name. Users do not need to
modify the source code, the makefile, or even recompile the program to instrument
at a function level. CrayPat also provides an API for fine-grain instrumentation,
which requires recompilation after the insertion of the API calls. CrayPat uses binary
rewrite techniques at the object level to create an instrumented application, which is
generated with a single static re-link.

Information can be collected for functions, loops, regions, hardware events, data
exchange via communication, synchronization, heap statistics, and I/O patterns. The
instrumentation phase results in a standalone instrumented program that when exe-
cuted, performs the collection and recording of performance data.

2.2 Data measurement

Performance data is captured during application execution by sampling, at time in-
tervals or hardware counters overflow, or upon entry/return from traced functions,
and is recorded in the form of a summarization of events over time (profile), or
a sequence of events over time (trace). Each process collects its own performance
data. Currently, internal buffers of per process memory are used to temporarily store
local collected performance data. Once these buffers are full, they are flushed to a
performance log file on a parallel file system.

The user can optionally control the behavior of the instrumented program during
execution through a set of runtime environment variables that affect what and how
the performance data is collected. Examples of this include the enabling of prede-
fined hardware counter groups that track chosen sets of hardware events, the ability
to choose the mechanism to use to sample the application, and the ability to modify

194 Luiz DeRose, Bill Homer, Dean Johnson, Steve Kaufmann, and Heidi Poxon

the number of data files that are written in parallel by the processes. By default, a
runtime summarization of the data is provided, which includes aggregation of the
data.

2.3 Analysis

Performance data analysis is offered for several areas. Examples include analysis
and subsequent automation to alleviate cumbersome manual tasks associated with
an experiment, and inter-node as well as intra-node data analysis.

The initial experiment, generally performed by a user is to determine where a
program spends most of its time. The Cray Performance Analysis Tools have a fea-
ture called “automatic profiling analysis”, which performs a sampling experiment
that creates a program profile, analyzes the profile to determine in which set of func-
tions the program spent most of its time, and generates an input file that the user can
use later for a more detailed experiment if needed. This is one example of data anal-
ysis that is performed prior to presentation, to help the user wade through potentially
large amounts of data, and prepare them for more fine-grained experiments.

One of the key inter-node analyses performed on the raw data, is the detection
of application load imbalance [4]. The components of the toolset can detect the per-
centage of resources available for parallelism that is “wasted”. Examples of load
imbalance include serial code segments that are executed by only one process, or
global synchronization points where a slower process or processes delay the com-
pletion of a collective operation. Two imbalance metrics are calculated; the “imbal-
ance percentage” and the “imbalance time”. The imbalance percentage is a range
from 0 to 100, where a perfectly balanced code segment has an imbalance of 0%,
and a serial code segment has an imbalance of 100%. Imbalance time, which re-
lates to execution time, is provided to identify code regions that need optimization.
It gives the user an upper-bound estimate for how much time could be saved in the
overall program if the identified load imbalances were corrected.

Multi-core systems typically introduce a hierarchy with process communication.
Some applications benefit from pairing processes on the same node which commu-
nicate often, while other applications benefit from combining computation and com-
munication processes on a node to alleviate memory or network access bottlenecks.
The toolset offers MPI rank placements suggestions based on analyzed memory
traffic or sent message traffic to minimize communication overhead on multi-core
systems.

Once the application developer has determined that there is a performance prob-
lem, the next step is to understand why that problem exists. The Cray Performance
Analysis Tools support derived hardware counter metrics, which provide more in-
tuitive performance characteristics for the user such as flops rate, % peak, cache
utilization statistics, etc. Through these higher level metrics, the toolset helps iden-
tify the “why” to unexpected performance, so the application developer can more
quickly identify the source of intra-node performance bottlenecks. Memory access

Cray Performance Analysis Tools 195

is one of the more readily addressable causes of intra-node performance bottlenecks.
If data or instructions aren’t in cache when the processor needs them, everything else
stops while the system goes off and fetches the required information. In addition to
derived metrics, a set of predefined hardware counter groups are available which
collect meaningful sets of hardware counter events for the user. Choosing the group
that provides cache utilization information tells the user how well their program is
using the memory hierarchy.

Often HPC applications include loops that can benefit greatly from compiler op-
timization. Another analysis feature, known as Profile Guided Optimization, offered
by the toolset for intra-node analysis, is the ability to work with a compiler to ana-
lyze hidden loop optimization potential. The tool reports loop count statistics, which
gives the application developer a better idea of how often a sequence of events is
repeated. Based on compiler feedback, it can also identify loops that have charac-
teristics that prevent optimization, and offer suggestions for actions so the user can
take advantage of vector instruction sets.

2.4 Presentation

The presentation component of the toolset currently includes both a text-based re-
porting utility: pat report, as well as a GUI-based visualization tool: Cray Appren-
tice2.

The pat report utility available in the toolset performs two functions. It reads
state and event data in the performance file created by the runtime library, and gen-
erates text reports according to the groups selected, presented in table format. Re-
ports display such detail as hardware performance counters event values, call trees,
and special processing for the function groups. One of the strengths of this utility
is that it can be run several times against the same collected performance data to
provide different combinations of data, so that the user can choose the subset from
the collected data that best suits their needs. In addition to a predefined set of tables
that can be generated, the utility supports options to control how the data will be
aggregated and labeled.

Figure 1 shows one of the default tables generated by pat report. This table shows
the percentage of time and actual time spent in each function, along with the actual
number of calls to each function and load imbalance metrics described above. It
divides the MPI time into the the time for the MPI operations and the time that is
spent in synchronization, which helps the user to identify load balance problems.
For each group of functions (e.g., user, MPI, I/O), the table shows by default only
functions that take at least 1% of the time. For example, this program spent 76.5%
of its time in user functions, 16.6% of its time in MPI operations, 6.3% in synchro-
nization of MPI collectives, and very little time in I/O and memory management. It
shows a relatively high imbalance percentage of mpi allreduce , which could be an
indication of load-balancing problem. However, the imbalance time of 0.27 seconds

196 Luiz DeRose, Bill Homer, Dean Johnson, Steve Kaufmann, and Heidi Poxon

Notes for table 1:

Table option:
-O profile

Options implied by table option:
-d ti%@1,ti,imb_ti,imb_ti%,tr -b gr,fu,pe=HIDE

This table shows only lines with Time% > 1.
(To set thresholds to zero, specify: -T)

Percentages at each level are relative.
(For absolute percentages, specify: -s percent=a)

Table 1: Profile by Function Group and Function

Time % | Time |Imb. Time | Imb. | Calls |Group
| | | Time % | | Function
| | | | | PE=’HIDE’

100.0% | 7.193714 | -- | -- | 17604 |Total
|--
| 76.5% | 5.500078 | -- | -- | 4752 |USER
||---
|| 96.0% | 5.277791 | 0.171848 | 3.3% | 12 |sweep_
|| 3.2% | 0.177352 | 0.005482 | 3.1% | 12 |source_
||===
| 16.6% | 1.197321 | -- | -- | 4603 |MPI
||---
|| 93.9% | 1.124227 | 0.277878 | 20.7% | 2280 |mpi_recv_
|| 5.9% | 0.070481 | 0.014437 | 17.7% | 2280 |mpi_send_
||===
| 6.3% | 0.453091 | -- | -- | 39 |MPI_SYNC
||---
|| 61.1% | 0.277012 | 0.215608 | 45.7% | 4 |mpi_bcast_(sync)
|| 38.7% | 0.175564 | 0.270049 | 63.2% | 32 |mpi_allreduce_(sync)
||===
| 0.5% | 0.037826 | -- | -- | 5992 |IO
||---
|| 99.2% | 0.037528 | 0.010681 | 23.1% | 5977 |ioctl
||===
| 0.1% | 0.005398 | -- | -- | 2218 |HEAP
||---
|| 52.8% | 0.002850 | 0.002219 | 45.7% | 1109 |malloc
|| 47.1% | 0.002545 | 0.002388 | 50.5% | 1108 |free
|==
|==

Fig. 1 CrayPat profile by function group and function

Cray Performance Analysis Tools 197

Fig. 2 Cray Apprentice2 call graph view

Fig. 3 Cray Apprentice2 hardware counters view

gives an indication that it would not be worthwhile for the user to try to improve this
load imbalance.

As its second function, pat report combines the performance data collected at
runtime with the information from the binary to generates a compressed perfor-

198 Luiz DeRose, Bill Homer, Dean Johnson, Steve Kaufmann, and Heidi Poxon

Fig. 4 Cray Apprentice2 time line view

mance file that is used as input file by the Cray Apprentice2 post-execution visual-
ization tool. Cray Apprentice2 is targeted to help identify performance bottlenecks,
such as load imbalance, excessive serialization, excessive communication and net-
work contention. It displays data captured by CrayPat during program execution.
The GUI displays a variety of different data panels, depending on the type of per-
formance experiment that was conducted with CrayPat. Cray Apprentice2 provides
call-graph-based profile information, as shown in Fig. 2, hardware counters dis-
plays, as shown in Fig. 3, and timeline-based trace visualization, as shown in Fig.
4. It supports traditional parallel processing and communication mechanisms, such
as MPI, OpenMP, and SHMEM, as well as performance visualization for I/O, also
displayed in Fig. 4.

3 Conclusions and Future Work

The Cray Performance Analysis Tools currently provide a robust infrastructure for
application performance measurement and analysis. The goal of the next generation
functionality is to offer a scalable solution to performance analysis, while further
helping the user identify important and meaningful information from potentially
massive data sets. The new functionality will extend Cray’s existing performance
measurement, analysis and visualization technology, as well as enhance user pro-
ductivity by providing innovative techniques in areas such as data management and

Cray Performance Analysis Tools 199

further automated performance analysis to bring Cray optimization knowledge to a
wider set of users.

Examples of enhancements include access to partial data specific to the type of
analysis or presentation requested, data filters, a new data presentation hierarchy,
and improved response time and usability of the presentation tools.

References

1. Bell, R., Malony, A.D., Shende, S.: A Portable, Extensible, and Scalable Tool for Parallel
Performance Profile Analysis. In: Proceedings of Euro-Par 2003, pp. 17–26 (2003)

2. DeRose, L.: The Hardware Performance Monitor Toolkit. In: Proceedings of Euro-Par 2001,
pp. 122–131 (August 2001)

3. DeRose, L., Ekanadham, K., Hollingsworth, J.K., Sbaraglia, S.: SIGMA: A Simulator Infras-
tructure to Guide Memory Analysis. In: Proceedings of SC2002. Baltimore, Maryland (2002)

4. DeRose, L., Homer, B., Johnson, D.: Detecting Application Load Imbalance on High End
Massively Parallel Systems. In: Proceedings of Euro-Par 2007, pp. 151–159 (August 2001)

5. DeRose, L., Reed, D.: Svpablo: A Multi-Language Architecture-Independent Performance
Analysis System. In: Proceedings of the International Conference on Parallel Processing, pp.
311–318 (1999)

6. European Center for Parallelism of Barcelona (CEPBA): Paraver - Parallel Program Visual-
ization and Analysis Tool - Reference Manual (2000). Http://www.cepba.upc.es/paraver

7. Graham, S., Kessler, P., McKusick, M.: gprof: A Call Graph Execution Profiler. In: Proceed-
ings of the SIGPLAN ’82 Symposium on Compiler Construction, pp. 120–126. Association
for Computing Machinery, Boston, MA (1982)

8. Kim, S., Kuhn, B., Voss, M., Hoppe, H.C., Nagel, W.: VGV: Supporting Performance Anal-
ysis of Object-Oriented Mixed MPI/OpenMP Parallel Applications. In: Proceedings of the
International Parallel and Distributed Processing Symposium (April 2002)

9. Mellor-Crummey, J., Fowler, R., Marin, G., Tallent, N.: HPCView: A tool for top-down anal-
ysis of node performance. The Journal of Supercomputing 23(1), 81–104 (2002)

10. Miller, B.P., Callaghan, M.D., Cargille, J.M., Hollingsworth, J.K., Irvin, R.B., Karavanic,
K.L., Kunchithapadam, K., Newhall, T.: The Paradyn Parallel Performance Measurement
Tools. IEEE Computer 28(11), 37–46 (1995)

11. Nagel, W., Arnold, A., Weber, M., Hoppe, H.C., Solchenbach, K.: Vampir: Visualization and
Analysis of MPI Resources. Supercomputer 12, 69–80 (1996)

12. Wolf, F., Mohr, B.: Automatic Performance Analysis of Hybrid MPI/OpenMP Applications.
Journal of Systems Architecture, Special Issue ’Evolutions in parallel distributed and network-
based processing’ 49(10–11), 421–439 (2003)

13. Wu, C., Bolmarcich, A., Snir, M., Wootton, D., Parpia, F., Chan, A., Lusk, E., Gropp, W.: From
trace generation to visualization: A performance framework for distributed parallel systems.
In: Proceedings of Supercomputing 2000 (2000)

Index

Access locality, 101
Acumem, 115

Bandwidth, 53, 116

Cache
Access cost, 102
Cache Line, 124
Cache oblivious, 100
Exclusive cache hierarchy, 98
Inclusive cache hierarchy, 98
Levels, 117
Miss ratio, 120
Spatial loss, 102
Synchronous cache, 98
Victim cache, 98

Cachegrind, 97
Call path profiling, 96
Callgrind, 93
Cray Performance Analysis Tools, 191
CUBE, 70

DDT, 71
Deadlock Detection, 64
Debugger, 15, 37, 63, 71, 82
Derived event, 99

Eclipse, 29, 35
Event trace, 96
Exclusive cost, 96

False cycle, 104
Filtering, 86, 146
Fingerprint, 122
Flat profile, 96
Function cycle, 104

GProf, 96

Grid, 35

Hardware Performance Counters, 96, 120, 144,
193

Hardware Prefetcher, 99
Heisenbug, 62
Heisenbugs, 49, 74
Hooks, 142

Inclusive cost, 96
Inlining, 142
Instrumentation, 51, 53, 96, 141, 160, 172, 193

KCachegrind, 93

Latency, 53

Memcheck, 50
Memory Debugging, 49, 79
MemoryScape, 79
MPI

Hybrid, 68
MPIch implementation, 65
MPIch2 implementation, 72
Open MPI implementation, 3, 24, 49, 65,

154
Profiling Interface, 63
Semantic Memory Error Detection, 49
Thread Level, 68
Vendor MPI, 65

NetPIPE, 56

OpenMP, 20, 24, 68, 141, 163
OProfile, 97
Overhead, 147

PAPI, 144

201

202 Index

Prefetching, 125
Principle of Locality, 101
Profiling, 121, 140
PTP, 20

Race Conditions, 66

Sampling, 96
Scalability, 118, 140
Scalasca, 157
Slowspot, 123
Spatial locality, 101
SPEC, 74, 118
Statistics, 152
Sun HPC ClusterTools, 3

Synthetic CPU, 50

TAU, 169
Temporal locality, 101
Thread Checker, 72
Tracing, 140
Tree Map Visualization, 109

Valgrind, 49, 50, 97
Vampir, 139
VampirServer, 139
VampirTrace, 139
Visualization, 39, 70, 148, 193
VTune, 96

	 I Integrated Development Environments
	Sun HPC ClusterTools™ 7+: A Binary Distribution of Open MPI
	Introduction
	History
	Sun-Driven features
	Sun Product Activity
	Pros and Cons
	Future work and conclusions
	References

	An Integrated Environment For the Development of Parallel Applications
	Introduction
	Challenges
	Architecture
	A Simple Case Study
	Future Directions
	Conclusion
	References

	Debugging MPI Programs on the Grid using g-Eclipse
	Introduction
	Related Work
	Overview of g-Eclipse Approach
	Remote Builder
	Grid Application Launchers
	Trace Viewer
	Conclusions and Future Work
	References

	 II Parallel Communication and Debugging
	Enhanced Memory debugging of MPI-parallel Applications in Open MPI
	Introduction
	Overview of Memcheck
	Design and Implementation
	Performance Implications
	Detectable error classes and findings in actual applications
	Conclusion and future work
	References

	MPI Correctness Checking with Marmot
	Introduction
	Related Work
	Design of Marmot
	Collaboration with other tools
	Experiences with real Applications
	How to install and use Marmot
	Conclusion and Future Work
	References

	Memory Debugging in Parallel and Distributed Applications
	Introduction
	The Challenges of Memory Debugging in Parallel Development
	Classifying Memory Errors
	Detecting Memory Leaks
	The MemoryScape Debugger
	MemoryScape Architecture
	MemoryScape Features
	MemoryScape Usage Tips
	MemoryScape User Case Study: SIMULIA Uses MemoryScape to Find and Fix Bugs Quickly
	Future MemoryScape Product Plans
	Conclusion

	 III Performance Analysis Tools
	Sequential Performance Analysis with Callgrind and KCachegrind
	Introduction
	Callgrind: a Call-Graph building Online Cache Simulator
	KCachegrind: Profile Visualization
	Usage Example
	Future Development
	References

	Improving Cache Utilization Using Acumem VPE
	Introduction
	Throughput Study of SPEC CPU 2006
	First Generation Performance Tools Based on Hardware Counters
	Enter: The New Performance Tool
	Utilization Study of the Worst SPEC CPU 2006 Applications
	Tuning Example: 179.art
	Tuning Example: Revisiting the Throughput Applications
	Conclusion
	References
	Parallel Performance Analysis Tools
	The Vampir Performance Analysis Tool-Set
	Introduction
	Performance Analysis via Profiling or Tracing
	Instrumentation with VampirTrace
	Run-Time Measurement and Event Recording
	Trace Visualization with Vampir and VampirServer
	Related Work
	Conclusions and Future Work
	References

	Usage of the SCALASCA toolset for scalable performance analysis of large-scale parallel applications
	Introduction
	Overview
	Instrumentation and Measurement
	Trace Analysis
	Understanding Performance Behavior
	Outlook
	References

	Evolution of a Parallel Performance System
	Introduction
	TAU Performance System Design and Architecture
	TAU Instrumentation
	TAU Measurement
	TAU Analysis
	Conclusion and Future Work
	References

	Cray Performance Analysis Tools
	Introduction
	The Cray Performance Analysis Tools
	Conclusions and Future Work
	References

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

